Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Schroedinger eigenmaps for the analysis of biomedical data.
IEEE Trans. Pattern Anal. Mach. Intell. 35, 1274-1280 (2013)
We introduce Schroedinger Eigenmaps (SE), a new semi-supervised manifold learning and recovery technique. This method is based on an implementation of graph Schroedinger operators with appropriately constructed barrier potentials as carriers of labeled information. We use our approach for the analysis of standard biomedical datasets and new multispectral retinal images.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Schroedinger Eigenmaps ; Laplacian Eigenmaps ; Schroedinger Operator On A Graph ; Barrier Potential ; Dimension Reduction ; Manifold Learning; Nonlinear Dimensionality Reduction ; Macular Degeneration ; Geometric Framework ; Bruchs Membrane ; Eye Disease ; Drusen ; Regularization ; Segmentation ; Diagnosis ; Tool
ISSN (print) / ISBN
0162-8828
e-ISSN
1939-3539
Quellenangaben
Band: 35,
Heft: 5,
Seiten: 1274-1280
Verlag
Institute of Electrical and Electronics Engineers (IEEE)
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Computational Biology (ICB)