Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Schroedinger eigenmaps for the analysis of biomedical data.
IEEE Trans. Pattern Anal. Mach. Intell. 35, 1274-1280 (2013)
We introduce Schroedinger Eigenmaps (SE), a new semi-supervised manifold learning and recovery technique. This method is based on an implementation of graph Schroedinger operators with appropriately constructed barrier potentials as carriers of labeled information. We use our approach for the analysis of standard biomedical datasets and new multispectral retinal images.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
4.795
9.183
49
52
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Schroedinger Eigenmaps ; Laplacian Eigenmaps ; Schroedinger Operator On A Graph ; Barrier Potential ; Dimension Reduction ; Manifold Learning; Nonlinear Dimensionality Reduction ; Macular Degeneration ; Geometric Framework ; Bruchs Membrane ; Eye Disease ; Drusen ; Regularization ; Segmentation ; Diagnosis ; Tool
Sprache
englisch
Veröffentlichungsjahr
2013
HGF-Berichtsjahr
2013
ISSN (print) / ISBN
0162-8828
e-ISSN
1939-3539
Quellenangaben
Band: 35,
Heft: 5,
Seiten: 1274-1280
Verlag
Institute of Electrical and Electronics Engineers (IEEE)
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Computational Biology (ICB)
POF Topic(s)
30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-551500-001
PubMed ID
23520264
WOS ID
WOS:000316126800019
Scopus ID
84875418338
Erfassungsdatum
2013-04-11