PuSH - Publikationsserver des Helmholtz Zentrums München

Sohns, M.* ; Viktorova, E.* ; Amos, C.I.* ; Brennan, P.* ; Fehringer, G.* ; Gaborieau, V.* ; Han, Y.* ; Heinrich, J. ; Chang-Claude, J.* ; Hung, R.J.* ; Müller-Nurasyid, M. ; Risch, A.* ; Lewinger, J.P.* ; Thomas, D.C.* ; Bickeböller, H.*

Empirical hierarchical Bayes approach to gene-environment interactions: Development and application to genome-wide association studies of lung cancer in TRICL.

Genet. Epidemiol. 37, 551-559 (2013)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
The analysis of gene-environment (G × E) interactions remains one of the greatest challenges in the postgenome-wide association studies (GWASs) era. Recent methods constitute a compromise between the robust but underpowered case-control and powerful case-only methods. Inferences of the latter are biased when the assumption of gene-environment (G-E) independence in controls fails. We propose a novel empirical hierarchical Bayes approach to G × E interaction (EHB-GE), which benefits from greater rank power while accounting for population-based G-E correlation. Building on Lewinger et al.'s ([2007] Genet Epidemiol 31:871-882) hierarchical Bayes prioritization approach, the method first obtains posterior G-E correlation estimates in controls for each marker, borrowing strength from G-E information across the genome. These posterior estimates are then subtracted from the corresponding case-only G × E estimates. We compared EHB-GE with rival methods using simulation. EHB-GE has similar or greater rank power to detect G × E interactions in the presence of large numbers of G-E correlations with weak to strong effects or only a low number of such correlations with large effect. When there are no or only a few weak G-E correlations, Murcray et al.'s method ([2009] Am J Epidemiol 169:219-226) identifies markers with low G × E interaction effects better. We applied EHB-GE and competing methods to four lung cancer case-control GWAS from the Interdisciplinary Research in Cancer of the Lung/International Lung Cancer Consortium with smoking as environmental factor. A number of genes worth investigating were identified by the EHB-GE approach.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter GEWIS; GWAS; lung cancer; population G-E correlation; rank power; Susceptibility Locus ; Independence ; Inference ; Variants ; Designs ; Models ; Scan
ISSN (print) / ISBN 0741-0395
e-ISSN 1098-2272
Zeitschrift Genetic Epidemiology
Quellenangaben Band: 37, Heft: 6, Seiten: 551-559 Artikelnummer: , Supplement: ,
Verlag Wiley
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed