Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Method of conditional moments (MCM) for the chemical master equation: A unified framework for the method of moments and hybrid stochastic-deterministic models.
J. Math. Biol. 69, 687-735 (2014)
The time-evolution of continuous-time discrete-state biochemical processes is governed by the Chemical Master Equation (CME), which describes the probability of the molecular counts of each chemical species. As the corresponding number of discrete states is, for most processes, large, a direct numerical simulation of the CME is in general infeasible. In this paper we introduce the method of conditional moments (MCM), a novel approximation method for the solution of the CME. The MCM employs a discrete stochastic description for low-copy number species and a moment-based description for medium/high-copy number species. The moments of the medium/high-copy number species are conditioned on the state of the low abundance species, which allows us to capture complex correlation structures arising, e.g., for multi-attractor and oscillatory systems. We prove that the MCM provides a generalization of previous approximations of the CME based on hybrid modeling and moment-based methods. Furthermore, it improves upon these existing methods, as we illustrate using a model for the dynamics of stochastic single-gene expression. This application example shows that due to the more general structure, the MCM allows for the approximation of multi-modal distributions.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
2.366
1.448
68
60
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Continuous-time Discrete-state Markov Process ; Chemical Master Equation ; Method Of Moments ; Hybrid Stochastic-determinstic Models ; Differential Algebraic Equations ; Gene Expression; Differential-algebraic Systems; Stochastic Gene-expression; Uniformization; Distributions; Dynamics; Models; Noise
Sprache
englisch
Veröffentlichungsjahr
2014
Prepublished im Jahr
2013
HGF-Berichtsjahr
2013
ISSN (print) / ISBN
0303-6812
e-ISSN
1432-1416
Zeitschrift
Journal of Mathematical Biology
Quellenangaben
Band: 69,
Heft: 3,
Seiten: 687-735
Verlag
Springer
Verlagsort
Heidelberg
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Computational Biology (ICB)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
PubMed ID
23918091
WOS ID
WOS:000340588700006
Scopus ID
84906320354
Erfassungsdatum
2013-08-12