Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Volumetric optoacoustic imaging with multi-bandwidth deconvolution.
IEEE Trans. Med. Imaging 33, 814-821 (2014)
Optoacoustic (photoacoustic) imaging based on cylindrically focused one-dimensional transducer arrays comes with powerful characteristics in visualizing optical contrast. Parallel reading of multiple detectors arranged around a tissue crosssection enables capturing data for generating images of this plane within micro-seconds. Dedicated small animals scanners and handheld systems using one-dimensional cylindrically focused ultrasound transducer arrays have demonstrated real-time crosssectional imaging and high in-plane resolution. Yet, the resolution achieved along the axis perpendicular to the focal plane, i.e. the elevation resolution, is determined by the focusing capacities of the detector and is typically lower than the in-plane resolution. Herein, we investigated whether deconvolution of the sensitivity field of the transducer could lead to tangible image improvements. We showcase the findings on experimental measurements from phantoms and animals and discuss the features and the limitations of the approach in improving resolution along the elevation dimension.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Cross-sectional Imaging ; Optoacoustic Tomography ; Out-of-plane Artefacts ; Photoacoustic Tomography ; Three-dimensional (3-d) Imaging; Photoacoustic Tomography; In-vivo; Computed-tomography; Small Animals; Video-rate; Model; Reconstruction; Microscopy; Transducer; System
ISSN (print) / ISBN
0278-0062
e-ISSN
1558-254X
Zeitschrift
IEEE Transactions on Medical Imaging
Quellenangaben
Band: 33,
Heft: 4,
Seiten: 814-821
Verlag
Institute of Electrical and Electronics Engineers (IEEE)
Verlagsort
New York, NY [u.a.]
Begutachtungsstatus
Peer reviewed