Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Realtime parallel back-projection algorithm for three-dimensional optoacoustic imaging devices.
Proc. SPIE 8800:88000I (2013)
Back-projection algorithms are probably the fastest approach to reconstruct an image from a set of optoacoustic (photoacoustic) data set. However, standard implementations of back-projection formulae are still not adequate for real-time (greater than 5 frames per second) visualization of three-dimensional structures. This is due to the fact that the number of voxels one needs to reconstruct in three-dimensions is orders of magnitude larger than the number of pixels in two dimensions. Herein we describe a parallel implementation of optoacoustic signal processing and back-projection reconstruction in an attempt to achieve real-time visualization of structures with three-dimensional optoacoustic tomographic systems. For this purpose, the parallel computation power of a graphics processing unit (GPU) is utilized. The GPU is programmed with OpenCL, a programming language for heterogenous platforms. We showcase that with the implementation suggested in this work imaging at frame rates up to 50 high-resolution three-dimensional images per second is achievable.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Gpu Acceleration ; Optoacoustic Tomography ; Parallel Back-projection Algorithm ; Photoacoustic Tomography
ISSN (print) / ISBN
0277-786X
e-ISSN
1996-756X
Zeitschrift
Proceedings of SPIE
Quellenangaben
Band: 8800,
Artikelnummer: 88000I
Verlag
SPIE
Begutachtungsstatus
Peer reviewed