PuSH - Publikationsserver des Helmholtz Zentrums München

Hentschel, R. ; Bittner, S. ; Janott, M. ; Biernath, C.J. ; Holst, J.* ; Ferrio, J.P.* ; Gessler, A.* ; Priesack, E.

Simulation of stand transpiration based on a xylem water flow model for individual trees.

Agric. For. Meteorol. 182, 31-42 (2013)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Quantifying the water exchange between a forest stand and the atmosphere is of major interest for the prediction of future growth conditions and the planning of silvicultural treatments. In the present study, we address (i) the uncertainties of sap flow estimations at the tree level and (ii) the performance of the simulation of stand transpiration. Terrestrial laser scan images (. TLS) of a mature beech stand (. Fagus sylvatica L.) in Southwestern Germany serve as input data for a representation of the aboveground tree architecture of the study stand. In the single-tree xylem water flow model (. XWF) used here, 98 beech trees are represented by 3D graphs of connected cylinders with explicit orientation and size. Beech-specific hydraulic parameters and physical properties of individual trees determine the physiological response of the tree model to environmental conditions.The XWF simulations are performed without further calibration to sap flow measurements. The simulations reliably match up with sap flow estimates derived from sap flow density measurements. The density measurements strongly depend on individual sapwood area estimates and the characterization of radial sap flow density gradients with xylem depth. Although the observed pure beech stand is even-aged, we observe a high variability in sap flow rates among the individual trees. Simulations of the individual sap flow rates show a corresponding variability due to the distribution of the crown projection area in the canopy and the different proportions of sapwood area.Stand transpiration is obtained by taking the sum of 98 single-tree simulations and the corresponding sap flow estimations, which are then compared with the stand-level root water uptake model (. RWU model) simulation. Using the RWU model results in a 35% higher simulation of seasonal stand transpiration relative to the XWF model. These findings demonstrate the importance of individual tree dimensions and stand heterogeneity assessments in estimating stand water use. As a consequence of species-specific model parameterization and precise TLS-based stand characterization, the XWF model is applicable to various sites and tree species and is a promising tool for predicting the possible water supply limitations of pure and mixed forest stands.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.421
1.998
16
16
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Fagus sylvatica; Hydrodynamics model; Sap flow density; Stand transpiration; Terrestrial laser scan; Fagus-sylvatica L. ; Sap Flux-density ; European Beech Forests ; Broad-leaved Forest ; Stomatal Conductance ; Hydraulic Architecture ; Numerical-simulation ; Canopy Conductance ; Nitrogen-balance ; Soil Drought
Sprache englisch
Veröffentlichungsjahr 2013
HGF-Berichtsjahr 2013
ISSN (print) / ISBN 0168-1923
e-ISSN 1873-2240
Quellenangaben Band: 182, Heft: , Seiten: 31-42 Artikelnummer: , Supplement: ,
Verlag Elsevier
Verlagsort Amsterdam [u.a.]
Begutachtungsstatus Peer reviewed
POF Topic(s) 20405 - Terrestrial Systems – from Observation to Prediction
Forschungsfeld(er) Environmental Sciences
PSP-Element(e) G-504400-003
Scopus ID 84883773476
Erfassungsdatum 2013-09-27