PuSH - Publikationsserver des Helmholtz Zentrums München

Transposable elements and their potential role in complex lung disorder.

Respir. Res. 14:99 (2013)
Verlagsversion Volltext DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Transposable elements (TEs) are a class of mobile genetic elements (MGEs) that were long regarded as junk DNA, which make up approximately 45% of the genome. Although most of these elements are rendered inactive by mutations and other gene silencing mechanisms, TEs such as long interspersed nuclear elements (LINEs) are still active and translocate within the genome. During transposition, they may create lesions in the genome, thereby acting as epigenetic modifiers. Approximately 65 disease-causing LINE insertion events have been reported thus far; however, any possible role of TEs in complex disorders is not well established. Chronic obstructive pulmonary disease (COPD) is one such complex disease that is primarily caused by cigarette smoking. Although the exact molecular mechanism underlying COPD remains unclear, oxidative stress is thought to be the main factor in the pathogenesis of COPD. In this review, we explore the potential role of oxidative stress in epigenetic activation of TEs such as LINEs and the subsequent cascade of molecular damage. Recent advancements in sequencing and computation have eased the identification of mobile elements. Therefore, a comparative study on the activity of these elements and markers for genome instability would give more insight on the relationship between MGEs and complex disorder such as COPD.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Korrespondenzautor
Schlagwörter Copd ; Chronic Obstructive Pulmonary Disease ; Transposons ; Hypomethylation ; Genome Instability ; Ngs ; Next Generation Sequencing; Microsatellite Dna Instability ; Obstructive Pulmonary-disease ; Human L1 Retrotransposition ; Double-strand Breaks ; Combinatorial Algorithms ; Molecular Pathogenesis ; Structural Variation ; Ventilatory Function ; Somatic Mutations ; Line-1 Elements
ISSN (print) / ISBN 1465-9921
e-ISSN 1465-993X
Zeitschrift Respiratory Research
Quellenangaben Band: 14, Heft: 1, Seiten: , Artikelnummer: 99 Supplement: ,
Verlag BioMed Central
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed