möglich sobald bei der ZB eingereicht worden ist.
A de novo-designed antimicrobial peptide with activity against multiresistant Staphylococcus aureus acting on RsbW kinase.
FASEB J. 27, 4476-4488 (2013)
Antimicrobial peptides are a promising complement to common antibiotics, development of resistance to which is a growing problem. Here we present a de novo-designed peptide, SP1-1 (RKKRLKLLKRLL-NH2), with antimicrobial activity against multiresistant Staphylococcus aureus (minimal inhibitory concentration: 6.25 μM). Elucidation of the mode of action of this peptide revealed a strong interaction with RsbW kinase (Kd: 6.01±2.73 nM), a serine kinase negatively regulating the activity of the transcription factor σB (SigB). SP1-1 binding and functional modulation of RsbW were shown in vitro by a combination of biochemical, molecular, and biophysical methods, which were further genetically evidenced in vivo by analysis of S. aureus ΔsigB deletion mutants. Intracellular localization of the peptide was demonstrated using nanometer-scaled secondary ion mass spectrometry. Moreover, microarray analysis revealed that transcription of numerous genes, involved in cell wall and amino acid metabolism, transport mechanisms, virulence, and pigmentation, is affected. Interestingly, several WalR binding motif containing genes are induced by SP1-1. In sum, the designed peptide SP1-1 seems to have multiple modes of action, including inhibition of a kinase, and therefore might contribute to the development of new antibacterial compounds, giving bacterial kinase inhibition a closer inspection.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
5.704
1.430
18
17
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Omega-B transcription factor; NanoSIMS; DNA binding; Sigma-factor Sigma(b); Recombinational Cloning; Biofilm Formation; Defense Peptides; Genome Sequence; Virulence Genes; Resistance; Cell; Bacteria; Proteins
Sprache
englisch
Veröffentlichungsjahr
2013
HGF-Berichtsjahr
2013
ISSN (print) / ISBN
0892-6638
e-ISSN
1530-6860
Zeitschrift
FASEB Journal
Quellenangaben
Band: 27,
Heft: 11,
Seiten: 4476-4488
Verlag
Wiley
Verlagsort
Bethesda, Md.
Begutachtungsstatus
Peer reviewed
Institut(e)
Research Unit Environmental Simulation (EUS)
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Environmental Sciences
PSP-Element(e)
G-504900-002
PubMed ID
23901070
WOS ID
WOS:000329937500015
Scopus ID
84887113318
Erfassungsdatum
2013-11-15