In contrast to the known rodent enzymes, the physiological significance of 17beta-hydroxysteroid dehydrogenase type 7 (17HSD7) and its presumed function in reproductive biology is not well understood in primates. As a first step, we recently cloned the complete coding regions of human and marmoset monkey (Callithrix jacchus) 17HSD7 (cj17HSD7). In the present work the complete cDNA of marmoset 17HSD1 (cj17HSD1), including the proximal promoter region, and a partial sequence of marmoset aromatase (cjARO) were sequenced in order to compare the expression of these estradiol synthesizing enzymes with that of 17HSD7 in a primate model and to identify tissues where 17HSD7 might participate in the pathway of estradiol synthesis. The gene structures of cj17HSD1 and cj17HSD7 were determined and proved to be very similar to the human orthologues. Northern hybridization showed that cjARO mRNA seems to be coexpressed preferably with cj17HSD1 in placenta, whereas in other tissues it is expressed in parallel only with cj17HSD7. Especially in corpora lutea, the cj17HSD7 transcript is detectable throughout the luteal phase of the ovarian cycle and increases during pregnancy, in parallel with the transcript of aromatase. Results were confirmed by immunoblots and immunohistochemistry using new polyclonal antisera directed against cj17HSD7 and cjARO protein. The enzymatic conversion of estrone to estradiol was assessed in marmoset corpora lutea. The pattern of coexpression with aromatase supports the hypothesis that luteal 17HSD7 complements placental 17HSD1, ensuring continued estradiol synthesis throughout pregnancy in primates.