YT521-B is a ubiquitously expressed nuclear protein that changes alternative splice site usage in a concentration dependent manner. YT521-B is located in a dynamic nuclear compartment, the YT body. We show that YT521-B is tyrosine phosphorylated by c-Abl in the nucleus. The protein shuttles between nucleus and cytosol, where it can be phosphorylated by c-Src or p59(fyn). Tyrosine phosphorylation causes dispersion of YT521-B from YT bodies to the nucleoplasm. Whereas YT bodies are soluble in non-denaturing buffers, the phosphorylated, dispersed form is non-soluble. Non-phosphorylated YT521-B changes alternative splice site selection of the IL-4 receptor, CD44 and SRp20, but phosphorylation of c-Abl minimizes this concentration dependent effect. We propose that tyrosine phosphorylation causes sequestration of YT521-B in an insoluble nuclear form, which abolishes the ability of YT521-B to change alternative splice sites.