PuSH - Publikationsserver des Helmholtz Zentrums München

Cretnik, S. ; Bernstein, A. ; Shouakar-Stash, O.* ; Löffler, F.E.* ; Elsner, M.

Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in Trichloroethene (TCE) reductive dehalogenation.

Molecules 19, 6450-6473 (2014)
Verlagsversion Volltext DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Reductive Dehalogenation ; Chlorinated Ethenes ; Trichloroethene ; Biodegradation ; Organohalide Respiration ; Dechlorination Mechanism ; Regioselectivity ; Vitamin B-12 ; Reductive Dehalogenase; Vinyl-chloride; Dce Isomers; Dechlorination; Tetrachloroethene; Transformation; Fractionation; Complexes; Cobalamin; Carbon; Iron
ISSN (print) / ISBN 1420-3049
e-ISSN 1420-3049
Zeitschrift Molecules
Quellenangaben Band: 19, Heft: 5, Seiten: 6450-6473 Artikelnummer: , Supplement: ,
Verlag MDPI
Verlagsort Basel
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed