Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Representation of functions on big data: Graphs and trees.
Appl. Comput. Harmon. Anal. 38, 489-509 (2014)
Many current problems dealing with big data can be cast efficiently as function approximation on graphs. The information in the graph structure can often be reorganized in the form of a tree; for example, using clustering techniques. The objective of this paper is to develop a new system of orthogonal functions on weighted trees. The system is local, easily implementable, and allows for scalable approximations without saturation. A novelty of our orthogonal system is that the Fourier projections are uniformly bounded in the supremum norm. We describe in detail a construction of wavelet-like representations and estimate the degree of approximation of functions on the trees.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Analysis On Graphs And Trees ; Big Data ; Function Approximation On Big Data ; Wavelet-like Representation; Diffusion Maps; Laplacian; Wavelets; Frames
ISSN (print) / ISBN
1063-5203
e-ISSN
1096-603X
Zeitschrift
Applied and Computational Harmonic Analysis
Quellenangaben
Band: 38,
Heft: 3,
Seiten: 489-509
Verlag
Academic Press
Verlagsort
San Diego, Calif. [u.a.]
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Computational Biology (ICB)