PuSH - Publikationsserver des Helmholtz Zentrums München

Feature ranking of type 1 diabetes susceptibility genes improves prediction of type 1 diabetes.

Diabetologia 57, 2521-2529 (2014)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
AIMS/HYPOTHESIS: More than 40 regions of the human genome confer susceptibility for type 1 diabetes and could be used to establish population screening strategies. The aim of our study was to identify weighted sets of SNP combinations for type 1 diabetes prediction. METHODS: We applied multivariable logistic regression and Bayesian feature selection to the Type 1 Diabetes Genetics Consortium (T1DGC) dataset with genotyping of HLA plus 40 SNPs within other type 1 diabetes-associated gene regions in 4,574 cases and 1,207 controls. We tested the weighted models in an independent validation set (765 cases, 423 controls), and assessed their performance in 1,772 prospectively followed children. RESULTS: The inclusion of 40 non-HLA gene SNPs significantly improved the prediction of type 1 diabetes over that provided by HLA alone (p = 3.1 × 10(-25)), with a receiver operating characteristic AUC of 0.87 in the T1DGC set, and 0.84 in the validation set. Feature selection identified HLA plus nine SNPs from the PTPN22, INS, IL2RA, ERBB3, ORMDL3, BACH2, IL27, GLIS3 and RNLS genes that could achieve similar prediction accuracy as the total SNP set. Application of this ten SNP model to prospectively followed children was able to improve risk stratification over that achieved by HLA genotype alone. CONCLUSIONS: We provided a weighted risk model with selected SNPs that could be considered for recruitment of infants into studies of early type 1 diabetes natural history or appropriately safe prevention.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
6.880
2.031
73
89
Tags
Icb_metabo Icb_ML
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Type 1 Diabetes ; Type 1 Diabetes Susceptibility Genes
Sprache englisch
Veröffentlichungsjahr 2014
HGF-Berichtsjahr 2014
ISSN (print) / ISBN 0012-186X
e-ISSN 1432-0428
Zeitschrift Diabetologia
Quellenangaben Band: 57, Heft: 12, Seiten: 2521-2529 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin ; Heidelberg [u.a.]
Begutachtungsstatus Peer reviewed
POF Topic(s) 30201 - Metabolic Health
30205 - Bioengineering and Digital Health
30502 - Diabetes: Pathophysiology, Prevention and Therapy
Forschungsfeld(er) Helmholtz Diabetes Center
Enabling and Novel Technologies
PSP-Element(e) G-502100-001
G-503800-001
G-502290-001
PubMed ID 25186292
Scopus ID 84926665363
Scopus ID 84906796109
Erfassungsdatum 2014-09-06