Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Diabetologia 57, 2521-2529 (2014)
AIMS/HYPOTHESIS: More than 40 regions of the human genome confer susceptibility for type 1 diabetes and could be used to establish population screening strategies. The aim of our study was to identify weighted sets of SNP combinations for type 1 diabetes prediction. METHODS: We applied multivariable logistic regression and Bayesian feature selection to the Type 1 Diabetes Genetics Consortium (T1DGC) dataset with genotyping of HLA plus 40 SNPs within other type 1 diabetes-associated gene regions in 4,574 cases and 1,207 controls. We tested the weighted models in an independent validation set (765 cases, 423 controls), and assessed their performance in 1,772 prospectively followed children. RESULTS: The inclusion of 40 non-HLA gene SNPs significantly improved the prediction of type 1 diabetes over that provided by HLA alone (p = 3.1 × 10(-25)), with a receiver operating characteristic AUC of 0.87 in the T1DGC set, and 0.84 in the validation set. Feature selection identified HLA plus nine SNPs from the PTPN22, INS, IL2RA, ERBB3, ORMDL3, BACH2, IL27, GLIS3 and RNLS genes that could achieve similar prediction accuracy as the total SNP set. Application of this ten SNP model to prospectively followed children was able to improve risk stratification over that achieved by HLA genotype alone. CONCLUSIONS: We provided a weighted risk model with selected SNPs that could be considered for recruitment of infants into studies of early type 1 diabetes natural history or appropriately safe prevention.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
6.880
2.031
73
89
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Type 1 Diabetes ; Type 1 Diabetes Susceptibility Genes
Sprache
englisch
Veröffentlichungsjahr
2014
HGF-Berichtsjahr
2014
ISSN (print) / ISBN
0012-186X
e-ISSN
1432-0428
Zeitschrift
Diabetologia
Quellenangaben
Band: 57,
Heft: 12,
Seiten: 2521-2529
Verlag
Springer
Verlagsort
Berlin ; Heidelberg [u.a.]
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Diabetes Research (IDF)
Institute of Computational Biology (ICB)
Institute of Diabetes and Obesity (IDO)
Institute of Pancreatic Islet Research (IPI)
Institute of Computational Biology (ICB)
Institute of Diabetes and Obesity (IDO)
Institute of Pancreatic Islet Research (IPI)
POF Topic(s)
30201 - Metabolic Health
30205 - Bioengineering and Digital Health
30502 - Diabetes: Pathophysiology, Prevention and Therapy
30205 - Bioengineering and Digital Health
30502 - Diabetes: Pathophysiology, Prevention and Therapy
Forschungsfeld(er)
Helmholtz Diabetes Center
Enabling and Novel Technologies
Enabling and Novel Technologies
PSP-Element(e)
G-502100-001
G-503800-001
G-502290-001
G-503800-001
G-502290-001
PubMed ID
25186292
WOS ID
WOS:000344630700015
Scopus ID
84926665363
Scopus ID
84906796109
Erfassungsdatum
2014-09-06