PuSH - Publikationsserver des Helmholtz Zentrums München

Weinmann, A. ; Demaret, L. ; Storath, M.*

Total variation regularization for manifold-valued data.

SIAM J. Imaging Sci. 7, 2226-2257 (2014)
Verlagsversion DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
We consider total variation minimization for manifold valued data. We propose a cyclic proximal point algorithm and a parallel proximal point algorithm to minimize TV functionals with $\ell^p$-type data terms in the manifold case. These algorithms are based on iterative geodesic averaging which makes them easily applicable to a large class of data manifolds. As an application, we consider denoising images which take their values in a manifold. We apply our algorithms to diffusion tensor images, interferometric SAR images as well as sphere and cylinder valued images. For the class of Cartan-Hadamard manifolds (which includes the data space in diffusion tensor imaging) we show the convergence of the proposed TV minimizing algorithms to a global minimizer.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Diffusion Tensor Imaging ; Manifold-valued Data ; Proximal Point Algorithm ; Total Variation Minimization
ISSN (print) / ISBN 1936-4954
Quellenangaben Band: 7, Heft: 4, Seiten: 2226-2257 Artikelnummer: , Supplement: ,
Verlag SIAM
Verlagsort Philadelphia, Pa.
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed