Three-dimensional tracking of lesion profile during laser surgery based on shock wave detection.
    
    
        
    
    
        
        Proc. SPIE 8943:89431N (2014)
    
    
    
		
		
			
				Lack of sensory feedback during laser surgery prevents surgeons from keeping track of the exact lesion profile and cutting depth. As a result, duration and complexity of the treatments are significantly increased. In this study we propose a new method for enabling three-dimensional tracking of the exact lesion profile, based on detection of shock waves emanating from the ablated tissue and subsequent reconstruction of the incision location using time-of-flight data obtained from multiple acoustic detectors. Ablation was performed in fresh bovine tissue samples using a Q-switched Nd-YAG laser, delivering 8 ns duration 150mJ pulses at a wavelength of 1064nm and repetition rate of 5Hz. The beam was focused by a 50mm lens on the tissue surface, which resulted in a deep cut of up to 9mm depth. The generated shock waves were detected using a spherical matrix ultrasonic array. The exact cutting profile was subsequently rendered by reconstructing the origin of shockwaves detected during the entire procedure. Different combinations of the detector positions were considered with respect to the resulting reconstruction quality. It was observed that, by utilizing at least 12 detection elements, the lesion profile could be characterized with high accuracy in all three dimensions, which was confirmed by histological evaluations. The proposed method holds promise for delivering highly precise and accurate real-time feedback during laser surgeries.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Cutting Depth ; Cutting Efficiency ; Laser Ablation ; Laser Surgery ; Lesion Profile ; Optoacoustic ; Shockwave
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2014
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2014
    
 
    
    
        ISSN (print) / ISBN
        0277-786X
    
 
    
        e-ISSN
        1996-756X
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        Photons Plus Ultrasound: Imaging and Sensing 2014
    
 
	
        Konferzenzdatum
        2-5 February 2014
    
     
	
        Konferenzort
        San Francisco, CA; United States
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 8943,  
	    Heft: ,  
	    Seiten: ,  
	    Artikelnummer: 89431N 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            SPIE
        
 
        
            Verlagsort
            
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-505590-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
        Erfassungsdatum
        2014-11-05