PuSH - Publikationsserver des Helmholtz Zentrums München

Loss of Npn1 from motor neurons causes postnatal deficits independent from Sema3A signaling.

Dev. Biol. 399, 2-14 (2015)
Verlagsversion DOI PMC
Closed
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
The correct wiring of neuronal circuits is of crucial importance for the function of the vertebrate nervous system. Guidance cues like the neuropilin receptors (Npn) and their ligands, the semaphorins (Sema) provide a tight spatiotemporal control of sensory and motor axon growth and guidance. Among this family of guidance partners the Sema3A-Npn1 interaction has been shown to be of great importance, since defective signaling leads to wiring deficits and defasciculation. For the embryonic stage these defects have been well described, however, also after birth the organism can adapt to new challenges by compensational mechanisms. Therefore, we used the mouse lines Olig2-Cre;Npn1(cond) and Npn1(Sema-) to investigate how postnatal organisms cope with the loss of Npn1 selectively from motor neurons or a systemic dysfunctional Sema3A-Npn1 signaling in the entire organism, respectively. While in Olig2-Cre(+);Npn1(cond-/-) mice clear anatomical deficits in paw posturing, bone structure, as well as muscle and nerve composition became evident, Npn1(Sema-) mutants appeared anatomically normal. Furthermore, Olig2-Cre(+);Npn1(cond) mutants revealed a dysfunctional extensor muscle innervation after single-train stimulation of the N.radial. Interestingly, these mice did not show obvious deficits in voluntary locomotion, however, skilled motor function was affected. In contrast, Npn1(Sema-) mutants were less affected in all behavioral tests and able to improve their performance over time. Our data suggest that loss of Sema3A-Npn1 signaling is not the only cause for the observed deficits in Olig2-Cre(+);Npn1(cond-/-) mice and that additional, yet unknown binding partners for Npn1 may be involved that allow Npn1(Sema-) mutants to compensate for their developmental deficits.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.547
1.024
6
8
Tags
GMC
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Motor Neuron ; Npn1 ; Postnatal Development ; Sema3a; Peripheral Nervous-system; Claw-paw Mutation; Axon Guidance; Detailed Quantification; Skeletal-muscle; Sciatic-nerve; Cells; Semaphorin; Neuropilin-1; Innervation
Sprache englisch
Veröffentlichungsjahr 2015
HGF-Berichtsjahr 2015
ISSN (print) / ISBN 0012-1606
e-ISSN 0012-1606
Zeitschrift Developmental Biology
Quellenangaben Band: 399, Heft: 1, Seiten: 2-14 Artikelnummer: , Supplement: ,
Verlag Elsevier
Verlagsort San Diego
Begutachtungsstatus Peer reviewed
POF Topic(s) 30204 - Cell Programming and Repair
30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
30201 - Metabolic Health
30205 - Bioengineering and Digital Health
Forschungsfeld(er) Genetics and Epidemiology
Enabling and Novel Technologies
PSP-Element(e) G-500500-001
G-500592-001
G-500500-005
G-500600-001
G-500300-001
G-500390-001
G-500600-003
PubMed ID 25512301
Scopus ID 84923967833
Scopus ID 84921485156
Erfassungsdatum 2015-01-01