PuSH - Publikationsserver des Helmholtz Zentrums München

Recommended joint and meta-analysis strategies for case-control association testing of single low-count variants.

Genet. Epidemiol. 37, 539-550 (2013)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
In genome-wide association studies of binary traits, investigators typically use logistic regression to test common variants for disease association within studies, and combine association results across studies using meta-analysis. For common variants, logistic regression tests are well calibrated, and meta-analysis of study-specific association results is only slightly less powerful than joint analysis of the combined individual-level data. In recent sequencing and dense chip based association studies, investigators increasingly test low-frequency variants for disease association. In this paper, we seek to (1) identify the association test with maximal power among tests with well controlled type I error rate and (2) compare the relative power of joint and meta-analysis tests. We use analytic calculation and simulation to compare the empirical type I error rate and power of four logistic regression based tests: Wald, score, likelihood ratio, and Firth bias-corrected. We demonstrate for low-count variants (roughly minor allele count [MAC] < 400) that: (1) for joint analysis, the Firth test has the best combination of type I error and power; (2) for meta-analysis of balanced studies (equal numbers of cases and controls), the score test is best, but is less powerful than Firth test based joint analysis; and (3) for meta-analysis of sufficiently unbalanced studies, all four tests can be anti-conservative, particularly the score test. We also establish MAC as the key parameter determining test calibration for joint and meta-analysis.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
2.951
0.978
22
86
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Joint Analysis ; Low-frequency Variants ; Meta-analysis ; Single Nucleotide Polymorphisms ; Single Variant Tests
Sprache englisch
Veröffentlichungsjahr 2013
HGF-Berichtsjahr 2014
ISSN (print) / ISBN 0741-0395
e-ISSN 1098-2272
Zeitschrift Genetic Epidemiology
Quellenangaben Band: 37, Heft: 6, Seiten: 539-550 Artikelnummer: , Supplement: ,
Verlag Wiley
Begutachtungsstatus Peer reviewed
POF Topic(s) 30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
30201 - Metabolic Health
30202 - Environmental Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-504100-001
G-500600-003
G-500700-001
G-504091-002
G-504000-002
G-504000-006
PubMed ID 23788246
Erfassungsdatum 2014-12-31