möglich sobald bei der ZB eingereicht worden ist.
Digital pathology: Multiple instance learning can detect Barrett's cancer.
In: Proceedings (IEEE International Symposium on Biomedical Imaging, ISBI, 29. April - 02.May 2014, Beijing, China). Piscataway, NJ: IEEE, 2014. 1348-1351
We study diagnosis of Barrett's cancer from hematoxylin & eosin (H & E) stained histopathological biopsy images using multiple instance learning (MIL). We partition tissue cores into rectangular patches, and construct a feature vector consisting of a large set of cell-level and patch-level features for each patch. In MIL terms, we treat each tissue core as a bag (group of instances with a single group-level ground-truth label) and each patch an instance. After a benchmarking study on several MIL approaches, we find that a graph-based MIL algorithm, mi-Graph [1], gives the best performance (87% accuracy, 0.93 AUC), due to its inherent suitability to bags with spatially-correlated instances. In patch-level diagnosis, we reach 82% accuracy and 0.89 AUC using Bayesian logistic regression. We also pursue a study on feature importance, which shows that patch-level color and texture features and cell-level features all have significant contribution to prediction.
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Cancer Diagnosis ; Histopathological Tissue Imaging ; Multiple Instance Learning
Sprache
englisch
Veröffentlichungsjahr
2014
HGF-Berichtsjahr
2015
ISBN
9781467319591
Konferenztitel
IEEE International Symposium on Biomedical Imaging, ISBI
Konferzenzdatum
29. April - 02.May 2014
Konferenzort
Beijing, China
Konferenzband
Proceedings
Quellenangaben
Seiten: 1348-1351
Verlag
IEEE
Verlagsort
Piscataway, NJ
POF Topic(s)
30205 - Bioengineering and Digital Health
30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-500390-001
G-500300-001
G-500300-001
Scopus ID
84927940292
Erfassungsdatum
2015-04-27