PuSH - Publikationsserver des Helmholtz Zentrums München

Kandemir, M.* ; Feuchtinger, A. ; Walch, A.K. ; Hamprecht, F.A.*

Digital pathology: Multiple instance learning can detect Barrett's cancer.

In: Proceedings (IEEE International Symposium on Biomedical Imaging, ISBI, 29. April - 02.May 2014, Beijing, China). Piscataway, NJ: IEEE, 2014. 1348-1351
We study diagnosis of Barrett's cancer from hematoxylin & eosin (H & E) stained histopathological biopsy images using multiple instance learning (MIL). We partition tissue cores into rectangular patches, and construct a feature vector consisting of a large set of cell-level and patch-level features for each patch. In MIL terms, we treat each tissue core as a bag (group of instances with a single group-level ground-truth label) and each patch an instance. After a benchmarking study on several MIL approaches, we find that a graph-based MIL algorithm, mi-Graph [1], gives the best performance (87% accuracy, 0.93 AUC), due to its inherent suitability to bags with spatially-correlated instances. In patch-level diagnosis, we reach 82% accuracy and 0.89 AUC using Bayesian logistic regression. We also pursue a study on feature importance, which shows that patch-level color and texture features and cell-level features all have significant contribution to prediction.
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Schlagwörter Cancer Diagnosis ; Histopathological Tissue Imaging ; Multiple Instance Learning
Sprache englisch
Veröffentlichungsjahr 2014
HGF-Berichtsjahr 2015
ISBN 9781467319591
Konferenztitel IEEE International Symposium on Biomedical Imaging, ISBI
Konferzenzdatum 29. April - 02.May 2014
Konferenzort Beijing, China
Konferenzband Proceedings
Quellenangaben Band: , Heft: , Seiten: 1348-1351 Artikelnummer: , Supplement: ,
Verlag IEEE
Verlagsort Piscataway, NJ
POF Topic(s) 30205 - Bioengineering and Digital Health
30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-500390-001
G-500300-001
Scopus ID 84927940292
Erfassungsdatum 2015-04-27