Co-combustion of coal-solid waste mixtures in pilot and laboratory-scale combustors with emphasis on monitoring of toxic chlorinated hydrocarbon emissions such as polychlorinated dibenzo-p-dioxins and -furans (PCDD/F) and polychlorinated biphenyls (PCB) is elaborated. The objective of the work is to investigate the so-called primary measures technique. Twenty different thermally resistant inorganic compounds were added directly to the fuel as inhibitors of PCDD/F formation. The fuel-types used in this study included lignite coal, pre-treated municipal solid waste and polyvinyl chloride (PVC). Principle component analysis (PCA) provides the basis for a feasible discussion about the efficiency of 20 inhibitors on PCDD/F and PCB formation. The study showed that the metal oxides group investigated had no inhibitory effect. Although the single N- and S-containing compounds, used as additives for the type of lignite coal, solid waste and PVC fuel, are not very effective as inhibitors, all other N- and S-containing substances are capable to strongly reduce PCDD/F and PCB flue gas emission. The most effective inhibitors are (NH(4))(2)SO(4) and (NH(4))(2)S(2)O(3). (NH(4))(2)SO(4) present at 3% of the fuel can reduce the PCDD/F emissions to 90%. Its low cost and high efficiency favour them as useful for full-scale combustion units.