Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Short term uptake and transport process for metformin in roots of Phragmites australis and Typha latifolia.
Chemosphere 134, 307-312 (2015)
Metformin (MET) as an emerging contaminant has been detected in surface water and wastewater in numerous countries, due to insufficient retention in classical waste water treatment plants. In order to characterize the uptake of the compound during phytotreatment of waste water, a short term Pitman chamber experiment was carried out to assess the characteristics of MET uptake and transport by roots. Three different concentrations (0.5, 1.0 and 2.0mmolL(-)(1)) were applied to cattail (Typha latifolia) and reed (Phragmites australis) roots which were used to investigate the uptake mechanism because they are frequently utilized in phytoremediation. In addition, quinidine was used as an inhibitor to assess the role of organic cation transporters (OCTs) in the uptake of MET by T. latifolia. The transport process of MET is different from carbamazepine (CBZ) and caffeine (CFN). In both T. latifolia and P. australis, the uptake processes were independent of initial concentrations. Quinidine, a known inhibitor of organic cation transporters, can significantly affect MET uptake by T. latifolia roots with inhibition ratios of 70-74%. Uptake into the root could be characterized by a linear model with R(2) values in the range of 0.881-0.999. Overall, the present study provides evidence that MET is taken up by plant roots and has the potential for subsequent translocation. OCTs could be one of the important pathways for MET uptake into the plant.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Inhibitor ; Organic Cation Transporter ; Pharmaceuticals ; Pitman Chamber ; Root; Personal Care Products; Organic Cation Transporter-2; Antidiabetic Drug Metformin; Scirpus-validus; Waste-water; Liquid-chromatography; Plants; Pharmaceuticals; Translocation; Fate
ISSN (print) / ISBN
0045-6535
e-ISSN
1879-1298
Zeitschrift
Chemosphere
Quellenangaben
Band: 134,
Seiten: 307-312
Verlag
Elsevier
Verlagsort
Kidlington, Oxford
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed