Biology requires observations at multiple geometrical scales, a feature that is not typically offered by a single imaging modality. We developed a hybrid optical system that not only provides different contrast modes but also offers imaging at different geometrical scales, achieving uniquely broad resolution and a 1000-fold volume sampling increase compared to volumes scanned by optical microscopy. The system combines optoacoustic mesoscopy, optoacoustic microscopy and two-photon microscopy, the latter integrating second and third harmonic generation modes. Label-free imaging of a mouse ear and zebrafish larva ex-vivo demonstrates the contrast and scale complementarity provided by the hybrid system. We showcase the superior anatomical orientation offered by the label-free capacity and hybrid operation, over fluorescence microscopy, and the dynamic selection between field of view and resolution achieved, leading to new possibilities in biological visualization.
Impact Factor
Scopus SNIP
Web of Science Times Cited
Scopus Cited By
Altmetric
5.578
1.402
43
39
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
PublikationstypArtikel: Journalartikel
DokumenttypWissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
SchlagwörterIn-vivo; Photoacoustic Microscopy; Tomography; Multiphoton; Deep