Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
The in situ gas-phase formation of a C-glycoside ion obtained during electrospray ionization tandem mass spectrometry. A unique intramolecular mechanism involving an ion-molecule reaction.
Rapid Commun. Mass Spectrom. 29, 1717-1732 (2015)
RATIONALE: This study examines the electrospray ionization mass spectrometry (ESI-MS), in-source collision-induced dissociation (CID) fragmentation and low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) of a synthetic pair of β- and α-anomers of the amphiphilic cholesteryl polyethoxy neoglycolipids containing the 2-azido-2-deoxy-D-galactosyl-D-GalN3 moiety. We describe the novel and unique in situ gas-phase formation of a C-glycoside ion formed during all these gas-phase processes and propose a reasonable mechanism for its formation. METHODS: The synthetic amphiphilic glycolipids were composed of the 2-deoxy-2-azido-D-galactosyl moiety (GalN3 , the hydrophilic part) covalently attached to a polyethoxy spacer which is covalently linked to the cholesteryl moiety (hydrophobic part). The 2-azido-2-deoxy-α- and β-D-galactosyl-containing glycolipids were studied by in-time and in-space ESI-MS and CID-MS/MS in positive ion mode, with quadrupole ion trap (QIT), quadrupole-quadrupole-time-of-flight (QqTOF), and Fourier transform ion cyclotron resonance (FTICR) instruments. RESULTS: Conventional single-stage ESI-MS analysis showed the formation of the protonated molecule. During the single-stage ESI-MS analysis and the CID-MS/MS of the [M+H](+) and [M+NH4 ](+) adducts obtained from both glycolipid anomers, the presence of a series of specific product ions with different intensities was observed, consistent with the [C-glycoside+H-N2 ](+) , [cholestadiene+H](+) , 2-deoxy-2-D-azido-galactosyl [GalN3 ](+) , [GalNH](+) and [sugar-Spacer+H](+) ions. CONCLUSIONS: The gas-phase formation of the [C-glycoside+H-N2 ](+) ion isolated from the glycolipid anomers was observed during both the ESI-MS of the glycolipids and the CID-MS/MS analyses of the [M+H](+) ions and it was found to occur by an intramolecular rearrangement involving an ion-molecule complex. CID-QqTOF-MS/MS and CID-FTICR-MS(2) analysis allowed the differentiation of the two glycolipid anomers and showed noticeable variation in the intensities of the product ions.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
2.253
0.874
2
2
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Sprache
englisch
Veröffentlichungsjahr
2015
HGF-Berichtsjahr
2015
ISSN (print) / ISBN
0951-4198
e-ISSN
1097-0231
Zeitschrift
Rapid Communications in Mass Spectrometry
Quellenangaben
Band: 29,
Heft: 19,
Seiten: 1717-1732
Verlag
Wiley
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Environmental Sciences
PSP-Element(e)
G-504800-001
PubMed ID
26331922
DOI
10.1002/rcm.7269
WOS ID
WOS:000360763100003
Scopus ID
84940643812
Erfassungsdatum
2015-09-05