Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Signal analysis based on complex wavelet signs.
Appl. Comput. Harmon. Anal. 42, 199-223 (2015)
We propose a signal analysis tool based on the sign (or the phase) of complex wavelet coefficients, which we call a signature. The signature is defined as the fine-scale limit of the signs of a signal's complex wavelet coefficients. We show that the signature equals zero at sufficiently regular points of a signal whereas at salient features, such as jumps or cusps, it is non-zero. At such feature points, the orientation of the signature in the complex plane can be interpreted as an indicator of local symmetry and antisymmetry. We establish that the signature rotates in the complex plane under fractional Hilbert transforms. We show that certain random signals, such as white Gaussian noise and Brownian motions, have a vanishing signature. We derive an appropriate discretization and show the applicability to signal analysis.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Complex Wavelets ; Feature Detection ; Hilbert Transform ; Phase ; Randomized Wavelet Coefficients ; Salient Feature ; Signal Analysis ; Wavelet Signature; Zero-crossings; Besov-spaces; Transform; Oscillation; Images; Phase
ISSN (print) / ISBN
1063-5203
e-ISSN
1096-603X
Zeitschrift
Applied and Computational Harmonic Analysis
Quellenangaben
Band: 42,
Heft: 2,
Seiten: 199-223
Verlag
Academic Press
Verlagsort
San Diego, Calif. [u.a.]
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Computational Biology (ICB)