Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
		
    Consequences of minimum soil tillage on abiotic soil properties and composition of microbial communities in a shallow Cambisol originated from fluvioglacial deposits.
        
        Biol. Fertil. Soils 51, 923-933 (2015)
    
    
    
				A long-term field experiment was run for 12 years to evaluate the impact of minimum tillage (MT) compared to conventional mouldboard ploughing (CT) on soil chemical, physical and microbial properties in a shallow Cambisol formed over fluvioglacial deposits of Drava river in Slovenia. Significant differences between MT and CT were found in vertical distribution of soil organic C (SOC) and nutrients (total N and plant available potassium); under MT, concentrations decreased from the soil surface to the lower layers, as opposed to CT which maintained rather uniform distribution down to the ploughing depth. MT in comparison with CT also increased the proportion of water-stable 2–4-mm-sized aggregates (80.9 and 61.3 %, respectively), water holding capacity (24.8 and 22.2 %, respectively) and plant available water (13.4 and 10.3 %, respectively) in the upper 0–10-cm soil layer. Bulk density, porosity, the proportion of water-stable 1–2-mm-sized aggregates and infiltration rate showed no significant differences between the tillage treatments. SOC content in the upper 0–10-cm soil layer was not significantly different between MT and CT (1.60 ± 0.07 and 1.45 ± 0.05 %, respectively), as well as the overall stock in the investigated soil profile (0–60 cm) remained unaffected (57.4 ± 0.8 and 59.1 ± 2.2 t ha−1, respectively). Microbial biomass, estimated by the total soil DNA, was higher in MT than CT in the 0–10-cm layer. Furthermore, a positive linear dependence of microbial biomass on SOC content was observed. Fingerprinting of bacterial, fungal and archaeal communities indicated that microbial community composition changed by long-term MT, whereas changes in microbial diversity were not detected for any domain. The most pronounced shifts in the composition were found for bacterial communities in the 10–20-cm layer, while the composition of fungal communities slightly changed in the upper 0–10 cm of MT soil. The composition of archaeal communities was not affected by the tillage or by the soil depth. Our results indicate that MT generates modest changes in soil structure and soil water retention properties and could support measures against erosion, drought and nutrient leaching. Considering increased microbial biomass in the topsoil of MT and shifts in microbial diversity, the impacts of MT on soil microbiome are also evident and need to be further investigated to identify the affected functional traits.
			
			
		Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Times Cited
Scopus
Cited By
					
					Cited By
Altmetric
					
				3.398
					1.517
					17
					19
					
					
				Anmerkungen
				
					
						 
						
					
				
			
				
			
				Besondere Publikation
				
					
						 
					
				
			
			
			
				Auf Hompepage verbergern
				
					
						 
					
				
			
			
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
     
    
    
        Schlagwörter
        Archaea ; Bacteria ; Fungi ; Microbial Biomass ; Soil Organic Matter ; Water Retention
    
 
     
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2015
    
 
     
    
        HGF-Berichtsjahr
        2015
    
 
    
    
        ISSN (print) / ISBN
        0178-2762
    
 
    
        e-ISSN
        1432-0789
    
 
     
     
     
	     
	 
	 
    
        Zeitschrift
        Biology and Fertility of Soils
    
 
		
    
        Quellenangaben
        
	    Band: 51,  
	    Heft: 8,  
	    Seiten: 923-933 
	    
	    
	
    
 
  
         
        
            Verlag
            Springer
        
 
         
	
         
         
         
         
         
	
         
         
         
    
         
         
         
         
         
         
         
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30202 - Environmental Health
    
 
    
        Forschungsfeld(er)
        Environmental Sciences
    
 
    
        PSP-Element(e)
        G-504700-001
    
 
     
     	
    
    
        WOS ID
        WOS:000363260300003
    
    
        Scopus ID
        84944679853
    
    
        Erfassungsdatum
        2015-10-07