Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
An algorithmic framework for Mumford-Shah regularization of inverse problems in imaging.
Inverse Probl. 31:115011 (2015)
The Mumford–Shah model is a very powerful variational approach for edge preserving regularization of image reconstruction processes. However, it is algorithmically challenging because one has to deal with a non-smooth and non-convex functional. In this paper, we propose a new efficient algorithmic framework for Mumford–Shah regularization of inverse problems in imaging. It is based on a splitting into specific subproblems that can be solved exactly. We derive fast solvers for the subproblems which are key for an efficient overall algorithm. Our method neither requires a priori knowledge of the gray or color levels nor of the shape of the discontinuity set. We demonstrate the wide applicability of the method for different modalities. In particular, we consider the reconstruction from Radon data, inpainting, and deconvolution. Our method can be easily adapted to many further imaging setups. The relevant condition is that the proximal mapping of the data fidelity can be evaluated a within reasonable time. In other words, it can be used whenever classical Tikhonov regularization is possible.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
1.323
1.342
5
27
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Admm ; Computed Tomography ; Deconvolution ; Dynamic Programming ; Image Reconstruction ; Inverse Problem ; Mumford-shah Functional
Sprache
englisch
Veröffentlichungsjahr
2015
HGF-Berichtsjahr
2015
ISSN (print) / ISBN
0266-5611
e-ISSN
1361-6420
Zeitschrift
Inverse Problems
Quellenangaben
Band: 31,
Heft: 11,
Artikelnummer: 115011
Verlag
Institute of Physics Publishing (IOP)
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Computational Biology (ICB)
POF Topic(s)
30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-551500-001
Scopus ID
84947447707
Erfassungsdatum
2015-11-24