Hoffmann, H.* ; Zhao, G.* ; Asseng, S.* ; Bindi, M.* ; Biernath, C.J. ; Constantin, J.* ; Coucheney, E.* ; Dechow, R.* ; Doro, L.* ; Eckersten, H.* ; Gaiser, T.* ; Grosz, B.* ; Heinlein, F. ; Kassie, B.T.* ; Kersebaum, K.C.* ; Klein, C. ; Kuhnert, M.* ; Lewan, E.* ; Moriondo, M.* ; Nendel, C.* ; Priesack, E. ; Raynal, H.* ; Roggero, P.P.* ; Rötter, R.P.* ; Siebert, S.* ; Specka, X.* ; Tao, F.* ; Teixeira, E.* ; Trombi, G.* ; Wallach, D.* ; Weihermüller, L.* ; Yeluripati, J.* ; Ewert, F.*
Impact of spatial soil and climate input data aggregation on regional yield simulations.
PLoS ONE 11:e0151782 (2016)
We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Systems Simulation; Nitrogen Dynamics; Winter-wheat; Crop Models; Data Resolution; Scale; Water; Variability; Calibration; Weather
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2016
Prepublished im Jahr
HGF-Berichtsjahr
2016
ISSN (print) / ISBN
1932-6203
e-ISSN
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 11,
Heft: 4,
Seiten: ,
Artikelnummer: e0151782
Supplement: ,
Reihe
Verlag
Public Library of Science (PLoS)
Verlagsort
Lawrence, Kan.
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Environmental Sciences
PSP-Element(e)
G-504912-001
Förderungen
Copyright
Erfassungsdatum
2016-04-14