Yet, I.* ; Menni, C.* ; Shin, S.Y.* ; Mangino, M.* ; Soranzo, N.* ; Adamski, J. ; Suhre, K.* ; Spector, T.D.* ; Kastenmüller, G. ; Bell, J.T.*
     
 
    
        
Genetic influences on metabolite levels: A comparison across metabolomic platforms.
    
    
        
    
    
        
        PLoS ONE 11:e0153672 (2016)
    
    
    
		
		
			
				Metabolomic profiling is a powerful approach to characterize human metabolism and help understand common disease risk. Although multiple high-throughput technologies have been developed to assay the human metabolome, no technique is capable of capturing the entire human metabolism. Large-scale metabolomics data are being generated in multiple cohorts, but the datasets are typically profiled using different metabolomics platforms. Here, we compared analyses across two of the most frequently used metabolomic platforms, Biocrates and Metabolon, with the aim of assessing how complimentary metabolite profiles are across platforms. We profiled serum samples from 1,001 twins using both targeted (Biocrates, n = 160 metabolites) and non-targeted (Metabolon, n = 488 metabolites) mass spectrometry platforms. We compared metabolite distributions and performed genome-wide association analyses to identify shared genetic influences on metabolites across platforms. Comparison of 43 metabolites named for the same compound on both platforms indicated strong positive correlations, with few exceptions. Genome-wide association scans with high-throughput metabolic profiles were performed for each dataset and identified genetic variants at 7 loci associated with 16 unique metabolites on both platforms. The 16 metabolites showed consistent genetic associations and appear to be robustly measured across platforms. These included both metabolites named for the same compound across platforms as well as unique metabolites, of which 2 (nonanoylcarnitine (C9) [Biocrates]/Unknown metabolite X-13431 [Metabolon] and PC aa C28:1 [Biocrates]/1-stearoylglycerol [Metabolon]) are likely to represent the same or related biochemical entities. The results demonstrate the complementary nature of both platforms, and can be informative for future studies of comparative and integrative metabolomics analyses in samples profiled on different platforms.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Genome-wide Association; Biological-systems; Phenotypes; Disease; Twin; Profiles; Resource; Kora
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2016
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2016
    
 
    
    
        ISSN (print) / ISBN
        1932-6203
    
 
    
        e-ISSN
        
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 11,  
	    Heft: 4,  
	    Seiten: ,  
	    Artikelnummer: e0153672 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Public Library of Science (PLoS)
        
 
        
            Verlagsort
            Lawrence, Kan.
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30505 - New Technologies for Biomedical Discoveries
30201 - Metabolic Health
30202 - Environmental Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
Genetics and Epidemiology
    
 
    
        PSP-Element(e)
        G-503700-001
G-505600-003
G-504090-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2016-04-18