Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
		
    Correcting laser-based water stable isotope readings biased by carrier gas changes.
        
        Environ. Sci. Technol. 50, 7074-7081 (2016)
    
    
    
				Recently, laser-based water stable isotope spectrometers have become popular as they enable previously impossible approaches of environmental observations. Consequently, they have been subjected to increasingly heterogeneous atmospheric conditions. However, there is still a severe lack of data on the impact of nonstandardized gas matrices on analyzer performances. Against this background, we investigated the influence of changing proportions of N2, O2, and CO2 in the carrier gas on the isotope measurements of a typical laser-based water stable isotope analyzer (Picarro L2120-i). We combined environmentally relevant mixtures of N2, O2, and CO2 with referenced, flash-evaporated water and found that isotope readings of the same water were altered by up to +14.57‰ for δ(18)O and -35.9‰ for δ(2)H. All tested relationships between carrier gas changes and respective isotope readings were strongly linearly correlated (R(2) > 0.99). Furthermore, an analyzer-measured variable allowed for reliable postcorrection of the biased isotope readings, which we additionally tested on field data. Our findings are of importance for environmental data obtained by analyzers based on the same technology. They are relevant for assays where inconsistent gas matrices or a mismatch in this regard between unknown and reference analyses cannot be excluded, which is in particular common when investigating the soil-vegetation-atmosphere continuum.
			
			
		Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Times Cited
Scopus
Cited By
					
					Cited By
Altmetric
					
				5.393
					1.718
					6
					6
					
					
				Anmerkungen
				
					
						 
						
					
				
			
				
			
				Besondere Publikation
				
					
						 
					
				
			
			
			
				Auf Hompepage verbergern
				
					
						 
					
				
			
			
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
     
    
    
        Schlagwörter
        Ring-down Spectroscopy; Pore-water; Delta-o-18 Measurements; Unsaturated Zone; Delta-h-2; Profiles; Spectrometry; Transport; Vapor; Flow
    
 
     
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2016
    
 
     
    
        HGF-Berichtsjahr
        2016
    
 
    
    
        ISSN (print) / ISBN
        0013-936X
    
 
    
        e-ISSN
        1520-5851
    
 
     
     
     
	     
	 
	 
    
        Zeitschrift
        Environmental Science & Technology
    
 
		
    
        Quellenangaben
        
	    Band: 50,  
	    Heft: 13,  
	    Seiten: 7074-7081 
	    
	    
	
    
 
  
         
        
            Verlag
            ACS
        
 
        
            Verlagsort
            Washington, DC
        
 
	
         
         
         
         
         
	
         
         
         
    
         
         
         
         
         
         
         
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute of Groundwater Ecology (IGOE)
    
 
    
        POF Topic(s)
        20403 - Sustainable Water Management
    
 
    
        Forschungsfeld(er)
        Environmental Sciences
    
 
    
        PSP-Element(e)
        G-504300-001
    
 
     
     	
    
        PubMed ID
        27291718
    
    
    
        WOS ID
        WOS:000379366300057
    
    
        Scopus ID
        84978966699
    
    
        Erfassungsdatum
        2016-07-05