PuSH - Publikationsserver des Helmholtz Zentrums München

Pontabry, J. ; Rousseau, F.* ; Studholme, C.* ; Koob, M.* ; Dietemann, J.L.*

A discriminative feature selection approach for shape analysis: Application to fetal brain cortical folding.

Med. Image Anal. 35, 313-326 (2016)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
The development of post-processing reconstruction techniques has opened new possibilities for the study of in-utero fetal brain MRI data. Recent cortical surface analysis have led to the computation of quantitative maps characterizing brain folding of the developing brain. In this paper, we describe a novel feature selection-based approach that is used to extract the most discriminative and sparse set of features of a given dataset. The proposed method is used to sparsely characterize cortical folding patterns of an in-utero fetal MR dataset, labeled with heterogeneous gestational age ranging from 26 weeks to 34 weeks. The proposed algorithm is validated on a synthetic dataset with both linear and non-linear dynamics, supporting its ability to capture deformation patterns across the dataset within only a few features. Results on the fetal brain dataset show that the temporal process of cortical folding related to brain maturation can be characterized by a very small set of points, located in anatomical regions changing across time. Quantitative measurements of growth against time are extracted from the set selected features to compare multiple brain regions (e.g. lobes and hemispheres) during the considered period of gestation.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.565
3.083
3
5
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Brain Development ; Feature Selection ; Fetal Imaging ; Structural Mri; Deep Sulcal Landmarks; In-utero; Volume Reconstruction; Spatiotemporal Atlas; Spatial-distribution; Mri; Patterns; Segmentation; Morphometry; Intensity
Sprache englisch
Veröffentlichungsjahr 2016
HGF-Berichtsjahr 2016
ISSN (print) / ISBN 1361-8415
e-ISSN 1361-8415
Quellenangaben Band: 35, Heft: , Seiten: 313-326 Artikelnummer: , Supplement: ,
Verlag Elsevier
Verlagsort Amsterdam
Begutachtungsstatus Peer reviewed
POF Topic(s) 30204 - Cell Programming and Repair
Forschungsfeld(er) Stem Cell and Neuroscience
PSP-Element(e) G-506200-001
Scopus ID 84982737910
Scopus ID 84980455991
PubMed ID 27498089
Erfassungsdatum 2016-08-10