Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
A discriminative feature selection approach for shape analysis: Application to fetal brain cortical folding.
Med. Image Anal. 35, 313-326 (2016)
The development of post-processing reconstruction techniques has opened new possibilities for the study of in-utero fetal brain MRI data. Recent cortical surface analysis have led to the computation of quantitative maps characterizing brain folding of the developing brain. In this paper, we describe a novel feature selection-based approach that is used to extract the most discriminative and sparse set of features of a given dataset. The proposed method is used to sparsely characterize cortical folding patterns of an in-utero fetal MR dataset, labeled with heterogeneous gestational age ranging from 26 weeks to 34 weeks. The proposed algorithm is validated on a synthetic dataset with both linear and non-linear dynamics, supporting its ability to capture deformation patterns across the dataset within only a few features. Results on the fetal brain dataset show that the temporal process of cortical folding related to brain maturation can be characterized by a very small set of points, located in anatomical regions changing across time. Quantitative measurements of growth against time are extracted from the set selected features to compare multiple brain regions (e.g. lobes and hemispheres) during the considered period of gestation.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
4.565
3.083
3
5
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Brain Development ; Feature Selection ; Fetal Imaging ; Structural Mri; Deep Sulcal Landmarks; In-utero; Volume Reconstruction; Spatiotemporal Atlas; Spatial-distribution; Mri; Patterns; Segmentation; Morphometry; Intensity
Sprache
englisch
Veröffentlichungsjahr
2016
HGF-Berichtsjahr
2016
ISSN (print) / ISBN
1361-8415
e-ISSN
1361-8415
Zeitschrift
Medical Image Analysis
Quellenangaben
Band: 35,
Seiten: 313-326
Verlag
Elsevier
Verlagsort
Amsterdam
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Epigenetics and Stem Cells (IES)
POF Topic(s)
30204 - Cell Programming and Repair
Forschungsfeld(er)
Stem Cell and Neuroscience
PSP-Element(e)
G-506200-001
WOS ID
WOS:000388248300023
Scopus ID
84982737910
Scopus ID
84980455991
PubMed ID
27498089
Erfassungsdatum
2016-08-10