möglich sobald bei der ZB eingereicht worden ist.
Data-driven identification of prognostic tumor subpopulations using spatially mapped t-SNE of mass spectrometry imaging data.
Proc. Natl. Acad. Sci. U.S.A. 113, 12244-12249 (2016)
The identification of tumor subpopulations that adversely affect patient outcomes is essential for a more targeted investigation into how tumors develop detrimental phenotypes, as well as for personalized therapy. Mass spectrometry imaging has demonstrated the ability to uncover molecular intratumor heterogeneity. The challenge has been to conduct an objective analysis of the resulting data to identify those tumor subpopulations that affect patient outcome. Here we introduce spatially mapped t-distributed stochastic neighbor embedding (t-SNE), a nonlinear visualization of the data that is able to better resolve the biomolecular intratumor heterogeneity. In an unbiased manner, t-SNE can uncover tumor subpopulations that are statistically linked to patient survival in gastric cancer and metastasis status in primary tumors of breast cancer.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
intratumor heterogeneity; mass spectrometry imaging; t-SNE; biomarker; cancer; Intratumor Heterogeneity; Clonal Evolution; Cancer; Visualization; Challenges; Expression; Brain
ISSN (print) / ISBN
0027-8424
e-ISSN
1091-6490
Quellenangaben
Band: 113,
Heft: 43,
Seiten: 12244-12249
Verlag
National Academy of Sciences
Verlagsort
Washington
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Research Unit Analytical Pathology (AAP)