PuSH - Publikationsserver des Helmholtz Zentrums München

Allen, R.P.* ; Donelson, N.C.* ; Jones, B.C.* ; Li, Y.* ; Manconi, M.* ; Rye, D.B.* ; Sanyal, S.* ; Winkelmann, J.

Animal models of RLS phenotypes.

Sleep Med. 31, 23-28 (2017)
Postprint DOI PMC
Open Access Green
Restless legs syndrome (RLS) is a complex disorder that involves sensory and motor systems. The major pathophysiology of RLS is low iron concentration in the substantia nigra containing the cell bodies of dopamine neurons that project to the striatum, an area that is crucial for modulating movement. People who have RLS often present with normal iron values outside the brain; recent studies implicate several genes are involved in the syndrome. Like most complex diseases, animal models usually do not faithfully capture the full phenotypic spectrum of disease, which is a uniquely human construct. Nonetheless, animal models have proven useful in helping to unravel the complex pathophysiology of diseases such as RLS and suggesting novel treatment paradigms. For example, hypothesis-independent genome-wide association studies (GWAS) have identified several genes as increasing the risk for RLS, including . BTBD9. Independently, the murine homolog . Btbd9 was identified as a candidate gene for iron regulation in the midbrain in mice. The relevance of the phenotype of another of the GWAS identified genes, . MEIS1, has also been explored. The role of . Btbd9 in iron regulation and RLS-like behaviors has been further evaluated in mice carrying a null mutation of the gene and in fruit flies when the BTBD9 protein is degraded. The . BTBD9 and . MEIS1 stories originate from human GWAS research, supported by work in a genetic reference population of mice (forward genetics) and further verified in mice, fish flies, and worms. Finally, the role of genetics is further supported by an inbred mouse strain that displays many of the phenotypic characteristics of RLS. The role of animal models of RLS phenotypes is also extended to include periodic limb movements.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.391
1.257
3
24
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Fish ; Flies ; Forward Genetics ; Mice ; Reverse Genetics ; Worms
Sprache
Veröffentlichungsjahr 2017
Prepublished im Jahr 2016
HGF-Berichtsjahr 2016
ISSN (print) / ISBN 1389-9457
e-ISSN 1878-5506
Zeitschrift Sleep Medicine
Quellenangaben Band: 31, Heft: , Seiten: 23-28 Artikelnummer: , Supplement: ,
Verlag Elsevier
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-503200-001
Scopus ID 85006372828
PubMed ID 27839945
Erfassungsdatum 2016-12-31