Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil.
Soil Biol. Biochem. 109, 214-226 (2017)
The microbial groups of nitrogen fixers, ammonia oxidizers, and denitrifiers largely drive the inorganic nitrogen cycle in temperate terrestrial ecosystems. Their spatial and temporal dynamics, however, vary depending on the studied scale. The present study aimed to fill a knowledge gap by providing an explicit picture of spatial and temporal dynamics of a subset of these soil microorganisms at the plot scale. We selected an unfertilized perennial grassland, where nitrogen cycling is considered to be efficient and tightly coupled to plant growth. At six times over one growing season 60 soil samples were taken from a 10 m × 10 m area and abundances of marker genes for total archaea and bacteria (16S rRNA), nitrogen fixing bacteria (nifH), ammonia oxidizing archaea (amoA AOA) and bacteria (amoA AOB), and denitrifying bacteria (nirS, . nirK and . nosZ) were determined by qPCR. Potential nitrification activity (PNA) and denitrifying enzyme activity (DEA) were determined. Seasonal changes in abundance patterns of marker genes were detected, and were associated with changes in substrate availability associated with plant growth stages. Potential nitrification and denitrification enzyme activities were strongly spatially structured at the studied scale, corresponding to periods of rapid plant growth, June and October, and their spatial distributions were similar, providing visual evidence of highly localized spatial and temporal conditions at this scale. Temporal variability in the N-cycling communities versus the stability of their respective potential activities provided evidence of both short-lived temporal niche partitioning and a degree of microbial functional redundancy. Our results indicate that in an unfertilized grassland, at the meter scale, abundances of microbial N-cycling organisms can exhibit transient changes, while nitrogen cycling processes remain stable.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
4.857
1.670
38
62
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Ammonia-oxidation ; Biogeography ; Denitrification ; Niche-partitioning ; Potential Enzyme Activity ; Spatio-temporal Variability; Ammonia-oxidizing Bacteria; Land-use Types; Community Structure; Agricultural Field; Nitrite Reductase; Plant Diversity; Potential Nitrification; Upland Grassland; Ecology; Abundance
Sprache
englisch
Veröffentlichungsjahr
2017
Prepublished im Jahr
2016
HGF-Berichtsjahr
2016
ISSN (print) / ISBN
0038-0717
e-ISSN
1879-3428
Zeitschrift
Soil Biology & Biochemistry
Quellenangaben
Band: 109,
Seiten: 214-226
Verlag
Elsevier
Verlagsort
Amsterdam
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Environmental Sciences
PSP-Element(e)
G-504700-001
WOS ID
WOS:000397691700020
Scopus ID
85028250552
Erfassungsdatum
2016-12-31