Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Graph kernels for molecular similarity.
Mol. Inform. 29, 266-273 (2010)
Molecular similarity measures are important for many cheminformatics applications like ligand-based virtual screening and quantitative structure-property relationships. Graph kernels are formal similarity measures defined directly on graphs, such as the (annotated) molecular structure graph. Graph kernels are positive semi-definite functions, i.e., they correspond to inner products. This property makes them suitable for use with kernel-based machine learning algorithms such as support vector machines and Gaussian processes. We review the major types of kernels between graphs (based on random walks, subgraphs, and optimal assignments, respectively), and discuss their advantages, limitations, and successful applications in cheminformatics.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Graph kernels; Molecular similarity; Machine learning; Structure graph
ISSN (print) / ISBN
1868-1743
e-ISSN
1868-1751
Zeitschrift
Molecular Informatics
Quellenangaben
Band: 29,
Heft: 4,
Seiten: 266-273
Verlag
Wiley
Verlagsort
Weinheim
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed