Efficient three-dimensional model-based reconstruction scheme for arbitrary optoacoustic acquisition geometries.
IEEE Trans. Med. Imaging 36, 1858-1867 (2017)
Optimal optoacoustic tomographic sampling is often hindered by the frequency-dependent directivity of ultrasound sensors, which can only be accounted for with an accurate three-dimensional (3D) model. Herein, we introduce a 3D modelbased reconstruction method applicable to optoacoustic imaging systems employing detection elements with arbitrary size and shape. The computational complexity and memory requirements are mitigated by introducing an efficient graphics processing unit (GPU)-based implementation of the iterative inversion. On-the-fly calculation of the entries of the model-matrix via a small look-up table avoids otherwise unfeasible storage of matrices typically occupying more than 300GB of memory. Superior imaging performance of the suggested method with respect to standard optoacoustic image reconstruction methods is first validated quantitatively using tissue-mimicking phantoms. Significant improvements in the spatial resolution, contrast to noise ratio and overall 3D image quality are also reported in real tissues by imaging the finger of a healthy volunteer with a hand-held volumetric optoacoustic imaging system.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Optoacoustic Tomography ; Photoacoustic Tomography ; Model-based Inversion ; Volumetric Imaging; Photoacoustic Tomography; Inversion; Microscopy; Algorithm
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2017
Prepublished im Jahr
HGF-Berichtsjahr
2017
ISSN (print) / ISBN
0278-0062
e-ISSN
1558-254X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 36,
Heft: 9,
Seiten: 1858-1867
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Institute of Electrical and Electronics Engineers (IEEE)
Verlagsort
New York, NY [u.a.]
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-505590-001
Förderungen
Copyright
Erfassungsdatum
2017-06-21