Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Aerosol mass spectrometer for simultaneous detection of polyaromatic hydrocarbons and inorganic components from individual particles.
Anal. Chem. 89, 6341-6345 (2017)
Online Studies of single airborne particles represent a demanding challenge in aerosol chemistry. New technologies that help to unravel the role of ambient aerosols in earth climate and to assess local and specific health risks from air pollution are highly desired. Of particular relevance are polycyclic aromatic hydrocarbons (PAHs) from combustion processes that are associated with both acute and long-term health effects. Usually, online single particle analyses apply laser desorption/ionization (LDI) in a bipolar mass spectrometer, revealing elemental constituents and limited molecular information by detection of both positive and negative ions. Approaches for the detection of PAHs from single particles have been developed but the elemental information from LDI that allows particle classification and source apportionment is lost in that case. Here we present a novel laser desorption. and ionization method delivering both the PAH-profile and the inorganic composition from the same, individual particle. Test measurements demonstrate the technique's capability to reveal the single-particle PAIL-distribution in aerosols (mixing state) and its assignment to specific pollution sources in a new and direct way.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Polycyclic Aromatic-hydrocarbons; Mixing State; Organic Aerosol; Wood Combustion; Controlled Dimensions; Aerodynamic Lenses; Nozzle Expansions; Ambient Air; Ionization; Soot
ISSN (print) / ISBN
0003-2700
e-ISSN
1520-6882
Zeitschrift
Analytical Chemistry
Quellenangaben
Band: 89,
Heft: 12,
Seiten: 6341-6345
Verlag
American Chemical Society (ACS)
Verlagsort
Washington
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed