Paige, E.* ; Barrett, J.* ; Pennells, L.* ; Sweeting, M.* ; Willeit, P.* ; di Angelantonio, E.* ; Gudnason, V.* ; Nørdestgaard, B.G.* ; Psaty, B.M.* ; Goldbourt, U.* ; Best, L.G.* ; Assmann, G.* ; Salonen, J.T.* ; Nietert, P.J.* ; Verschuren, W.M.M.* ; Brunner, E.J.* ; Kronmal, R.A.* ; Salomaa, V.* ; Bakker, S.J.L.* ; Dagenais, G.R.* ; Sato, S.* ; Jansson, J.* ; Willeit, J.* ; Onat, A.* ; de la Camara, A.G.* ; Roussel, R.* ; Völzke, H.* ; Dankner, R.* ; Tipping, R.W.* ; Meade, T.W.* ; Donfrancesco, C.* ; Kuller, L.H.* ; Peters, A. ; Gallacher, J.* ; Kromhout, D.* ; Iso, H.* ; Knuiman, M.* ; Casiglia, E.* ; Kavousi, M.* ; Palmieri, L.* ; Sundström, J.* ; Davis, B.R.* ; Njolstad, I.* ; Couper, D.* ; Danesh, J.* ; Thompson, S.G.* ; Wood, A.*
Use of repeated blood pressure and cholesterol measurements to improve cardiovascular disease risk prediction: An individual-participant-data meta-analysis.
Am. J. Epidemiol. 186, 899-907 (2017)
The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data encompassing 1962-2014) with more than 1 million measurements of systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. Over a median 12 years of follow-up, 21,170 CVD events occurred. Risk prediction models using cumulative mean values of repeated measurements and summary measures from longitudinal modeling of the repeated measurements were compared with models using measurements from a single time point. Risk discrimination (C-index) and net reclassification were calculated, and changes in C-indices were meta-analyzed across studies. Compared with the single-time-point model, the cumulative means and longitudinal models increased the C-index by 0.0040 (95% confidence interval (CI): 0.0023, 0.0057) and 0.0023 (95% CI: 0.0005, 0.0042), respectively. Reclassification was also improved in both models; compared with the single-time-point model, overall net reclassification improvements were 0.0369 (95% CI: 0.0303, 0.0436) for the cumulative-means model and 0.0177 (95% CI: 0.0110, 0.0243) for the longitudinal model. In conclusion, incorporating repeated measurements of blood pressure and cholesterol into CVD risk prediction models slightly improves risk prediction.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Cardiovascular Disease ; Longitudinal Measurements ; Repeated Measurements ; Risk Factors ; Risk Prediction; Coronary-heart-disease; Multiple; Variability; Models
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2017
Prepublished im Jahr
HGF-Berichtsjahr
2017
ISSN (print) / ISBN
0002-9262
e-ISSN
1476-6256
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 186,
Heft: 8,
Seiten: 899-907
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Oxford University Press
Verlagsort
Cary
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Epidemiology (EPI)
POF Topic(s)
30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-504000-005
Förderungen
Copyright
Erfassungsdatum
2017-11-08