Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
A functional partial differential equation arising in a cell growth model with dispersion.
Math. Meth. Appl. Sci., DOI: 10.1002/mma.4684 (2017)
In this paper we solve an initial-boundary value problem that involves a pde with a nonlocal term. The problem comes from a cell division model where the growth is assumed to be stochastic. The deterministic version of this problem yields a first-order pde; the stochastic version yields a second-order parabolic pde. There are no general methods for solving such problems even for the simplest cases owing to the nonlocal term. Although a solution method was devised for the simplest version of the first-order case, the analysis does not readily extend to the second-order case. We develop a method for solving the second-order case and obtain the exact solution in a form that allows us to study the long time asymptotic behaviour of solutions and the impact of the dispersion term. We establish the existence of a large time attracting solution towards which solutions converge exponentially in time. The dispersion term does not appear in the exponential rate of convergence.
Impact Factor
Scopus SNIP
Scopus
Cited By
Cited By
Altmetric
1.017
0.748
7
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Cell Division ; Functional Differential Equation ; Parabolic Partial Differential Equation
Sprache
englisch
Veröffentlichungsjahr
2017
HGF-Berichtsjahr
2017
ISSN (print) / ISBN
0170-4214
e-ISSN
1099-1476
Zeitschrift
Mathematical Methods in the Applied Sciences
Verlag
Wiley
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Computational Biology (ICB)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
DOI
10.1002/mma.4684
Scopus ID
85038260702
Erfassungsdatum
2017-12-27