Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
A functional partial differential equation arising in a cell growth model with dispersion.
Math. Meth. Appl. Sci., DOI: 10.1002/mma.4684 (2017)
In this paper we solve an initial-boundary value problem that involves a pde with a nonlocal term. The problem comes from a cell division model where the growth is assumed to be stochastic. The deterministic version of this problem yields a first-order pde; the stochastic version yields a second-order parabolic pde. There are no general methods for solving such problems even for the simplest cases owing to the nonlocal term. Although a solution method was devised for the simplest version of the first-order case, the analysis does not readily extend to the second-order case. We develop a method for solving the second-order case and obtain the exact solution in a form that allows us to study the long time asymptotic behaviour of solutions and the impact of the dispersion term. We establish the existence of a large time attracting solution towards which solutions converge exponentially in time. The dispersion term does not appear in the exponential rate of convergence.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Cell Division ; Functional Differential Equation ; Parabolic Partial Differential Equation
ISSN (print) / ISBN
0170-4214
e-ISSN
1099-1476
Zeitschrift
Mathematical Methods in the Applied Sciences
Verlag
Wiley
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Computational Biology (ICB)