Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
		
    Novel approach to identifying supersaturated metastable ambient aerosol particles.
        
        Environ. Sci. Technol. 39, 8177-8184 (2005)
    
    
    
				Atomic force microscopy (AFM) was used to determine the shape of fine and ultrafine ambient aerosol particles with sizes between 25 and 700 nm after soft landing on a solid substrate. The particles were collected in summer during daytime at a relative humidity around 50%. To avoid kinetically induced deformation, as previously observed using high-velocity sampling in impactors, the particles were collected on pore filters at very low face velocities (on the order of 10 cm/s). The shape of the collected particles was quantified in terms of their height and apparent diameter. The amount of broadening introduced by the pyramidal shape of the nonideally sharp AFM tips was calibrated using Latex reference spheres with a range of diameters. The height-to-diameter ratios, H/D, of the collected aerosol particles could be extracted from the measured data. Specified in terms of volume-equivalent (dry) diameters, Dv, the size selected frequency distributions of the H/Dv-ratios were found to be bimodal. A small mode centered at H/Dv = 1.0 +/- 0.1 is attributed to nonhygroscopic particles that retained their shape after deposition on the substrate. The large mode, with a peak at H/Dv = 0.65 +/- 0.05, reflects soft particles which were strongly deformed due to vertical collapse after deposition. The pronounced deformation suggests that these particles had previously experienced deliquescence and, when collected at a comparatively low humidity, were in a metastable, supersaturated aqueous state. After landing and indoor sample storage the water evaporated, resulting in minimum H/Dv-ratios as low as 0.45. The dried metastable fraction amounted to 81 +/- 12% in the size range 150 < Dv < 700 nm, and 79 +/- 10% for 50 < or = Dv < or = 150 nm, but only 26 +/- 10% for Dv < 50 nm. Comparison with recently reported data suggests that the observed metastable fraction is the same as the hygroscopic fraction identified by other means. The interpretation is further substantiated by a comparison of the size distributions of collected and airborne particles.
			
			
		Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Times Cited
Scopus
Cited By
					
					Cited By
Altmetric
					
				3.557
					0.000
					6
					8
					
					
				Anmerkungen
				
					
						 
						
					
				
			
				
			
				Besondere Publikation
				
					
						 
					
				
			
			
			
				Auf Hompepage verbergern
				
					
						 
					
				
			
			
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
     
    
     
     
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2005
    
 
     
    
        HGF-Berichtsjahr
        0
    
 
    
    
        ISSN (print) / ISBN
        0013-936X
    
 
    
        e-ISSN
        1520-5851
    
 
     
     
     
	     
	 
	 
    
        Zeitschrift
        Environmental Science & Technology
    
 
		
    
        Quellenangaben
        
	    Band: 39,  
	    Heft: 21,  
	    Seiten: 8177-8184 
	    
	    
	
    
 
  
         
        
            Verlag
            ACS
        
 
        
            Verlagsort
            Washington, DC
        
 
	
         
         
         
         
         
	
         
         
         
    
         
         
         
         
         
         
         
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute of Radiation Protection (ISS)
    
 
    
        POF Topic(s)
        30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
    
 
    
        Forschungsfeld(er)
        Radiation Sciences
    
 
    
        PSP-Element(e)
        G-501100-006
    
 
     
     	
    
    
        Erfassungsdatum
        2005-12-31