PuSH - Publikationsserver des Helmholtz Zentrums München

Chen, G.B.* ; Lee, S.H.* ; Robinson, M.R.* ; Trzaskowski, M.* ; Zhu, Z.X.* ; Winkler, T.W.* ; Day, F.R.* ; Croteau-Chonka, D.C.* ; Wood, A.R.* ; Locke, A.E.* ; Kutalik, Z.* ; Loos, R.J.* ; Frayling, T.M.* ; Hirschhorn, J.N.* ; Yang, J.A.* ; Wray, N.R.* ; GIANT Consortium (Albrecht, E. ; Grallert, H. ; Lichtner, P. ; Müller-Nurasyid, M. ; Ried, J.S. ; Thorand, B. ; Gieger, C. ; Illig, T. ; Peters, A. ; Strauch, K. ; Wichmann, H.-E. ; Heid, I.M.)

Across-cohort QC analyses of GWAS summary statistics from complex traits.

Eur. J. Hum. Genet. 25, 137-146 (2017)
Verlagsversion Forschungsdaten DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Genome-wide association studies (GWASs) have been successful in discovering SNP trait associations for many quantitative traits and common diseases. Typically, the effect sizes of SNP alleles are very small and this requires large genome-wide association meta-analyses (GWAMAs) to maximize statistical power. A trend towards ever-larger GWAMA is likely to continue, yet dealing with summary statistics from hundreds of cohorts increases logistical and quality control problems, including unknown sample overlap, and these can lead to both false positive and false negative findings. In this study, we propose four metrics and visualization tools for GWAMA, using summary statistics from cohort-level GWASs. We propose methods to examine the concordance between demographic information, and summary statistics and methods to investigate sample overlap. (I) We use the population genetics Fst statistic to verify the genetic origin of each cohort and their geographic location, and demonstrate using GWAMA data from the GIANT Consortium that geographic locations of cohorts can be recovered and outlier cohorts can be detected. (II) We conduct principal component analysis based on reported allele frequencies, and are able to recover the ancestral information for each cohort. (III) We propose a new statistic that uses the reported allelic effect sizes and their standard errors to identify significant sample overlap or heterogeneity between pairs of cohorts. (IV) To quantify unknown sample overlap across all pairs of cohorts, we propose a method that uses randomly generated genetic predictors that does not require the sharing of individual-level genotype data and does not breach individual privacy.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.287
1.264
10
11
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2017
Prepublished im Jahr 2016
HGF-Berichtsjahr 2017
ISSN (print) / ISBN 1018-4813
e-ISSN 1476-5438
Quellenangaben Band: 25, Heft: 1, Seiten: 137-146 Artikelnummer: , Supplement: ,
Verlag Nature Publishing Group
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Genetic Epidemiology (IGE)
Institute of Epidemiology (EPI)
CF Genomics (CF-GEN)
Institute of Human Genetics (IHG)
POF Topic(s) 30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
30202 - Environmental Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-504100-001
G-504091-002
A-632700-001
G-504000-002
G-504091-004
G-504091-001
G-504000-010
G-504000-009
G-504000-007
G-500700-001
Scopus ID 84983451946
PubMed ID 27552965
Erfassungsdatum 2018-02-09