möglich sobald bei der ZB eingereicht worden ist.
Grading of mammalian cumulus oocyte complexes using machine learning for in vitro embryo culture.
In: (3rd IEEE EMBS International Conference on Biomedical and Health Informatics, 24-27 February 2016, Las Vegas, USA). 2016. 172-175
Visual observation of Cumulus Oocyte Complexes provides only limited information about its functional competence, whereas the molecular evaluations methods are cumbersome or costly. Image analysis of mammalian oocytes can provide attractive alternative to address this challenge. However, it is complex, given the huge number of oocytes under inspection, subjective nature of the features inspected for identification. Supervised machine learning methods like random forest with annotations from expert biologists can make the analysis task standardized and reduces inter-subject variability. We present a semiautomatic framework for predicting the class an oocyte belongs to, based on multi-object parametric segmentation on the acquired microscopic image followed by a feature based classification using random forests.
Scopus
Cited By
Cited By
Altmetric
8
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Sprache
englisch
Veröffentlichungsjahr
2016
HGF-Berichtsjahr
2017
ISSN (print) / ISBN
9781509024551
Konferenztitel
3rd IEEE EMBS International Conference on Biomedical and Health Informatics
Konferzenzdatum
24-27 February 2016
Konferenzort
Las Vegas, USA
Quellenangaben
Seiten: 172-175
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-505590-001
Scopus ID
84968611433
Erfassungsdatum
2018-02-22