Argelaguet, R.* ; Velten, B.* ; Arnol, D.* ; Dietrich, S.* ; Zenz, T.* ; Marioni, J.C.* ; Buettner, F. ; Huber, W.* ; Stegle, O.*
Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets.
Mol. Syst. Biol. 14:e8124 (2018)
Multi‐omics studies promise the improved characterization of biological processes across molecular layers. However, methods for the unsupervised integration of the resulting heterogeneous data sets are lacking. We present Multi‐Omics Factor Analysis (MOFA), a computational method for discovering the principal sources of variation in multi‐omics data sets. MOFA infers a set of (hidden) factors that capture biological and technical sources of variability. It disentangles axes of heterogeneity that are shared across multiple modalities and those specific to individual data modalities. The learnt factors enable a variety of downstream analyses, including identification of sample subgroups, data imputation and the detection of outlier samples. We applied MOFA to a cohort of 200 patient samples of chronic lymphocytic leukaemia, profiled for somatic mutations, RNA expression, DNA methylation and ex vivo drug responses. MOFA identified major dimensions of disease heterogeneity, including immunoglobulin heavy‐chain variable region status, trisomy of chromosome 12 and previously underappreciated drivers, such as response to oxidative stress. In a second application, we used MOFA to analyse single‐cell multi‐omics data, identifying coordinated transcriptional and epigenetic changes along cell differentiation.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Data Integration ; Dimensionality Reduction ; Multi-omics ; Personalized Medicine ; Single-cell Omics; Polycyclic Aromatic-hydrocarbons; Lung Epithelial-cells; Yangtze-river Delta; 6 European Cities; Ambient Air; Oxidative Stress; Mouse Lung; A549 Cells; Cytotoxic Responses; Seasonal-variation
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2018
Prepublished im Jahr
HGF-Berichtsjahr
2018
ISSN (print) / ISBN
1744-4292
e-ISSN
1744-4292
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 14,
Heft: 6,
Seiten: ,
Artikelnummer: e8124
Supplement: ,
Reihe
Verlag
EMBO Press
Verlagsort
Po Box 211, 1000 Ae Amsterdam, Netherlands
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
90000 - German Center for Diabetes Research
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-501901-026
Förderungen
Copyright
Erfassungsdatum
2018-07-16