PuSH - Publikationsserver des Helmholtz Zentrums München

Tetko, I.V.* ; Solov'ev, V.P.* ; Antonov, A.V. ; Yao, X.* ; Doucet, J.P.* ; Fan, B.* ; Hoonakker, F.* ; Fourches, D.* ; Jost, P.* ; Lachiche, N.* ; Varnek, A.*

Benchmarking of linear and nonlinear approaches for quantitative structure-property relationship studies of metal complexation with ionophores.

J. Chem. Inf. Model. 46, 808-819 (2006)
Verlagsversion DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
A benchmark of several popular methods, Associative Neural Networks (ANN), Support Vector Machines (SVM), k Nearest Neighbors (kNN), Maximal Margin Linear Programming (MMLP), Radial Basis Function Neural Network (RBFNN), and Multiple Linear Regression (MLR), is reported for quantitative-structure property relationships (QSPR) of stability constants logK1 for the 1:1 (M:L) and logbeta2 for 1:2 complexes of metal cations Ag+ and Eu3+ with diverse sets of organic molecules in water at 298 K and ionic strength 0.1 M. The methods were tested on three types of descriptors: molecular descriptors including E-state values, counts of atoms determined for E-state atom types, and substructural molecular fragments (SMF). Comparison of the models was performed using a 5-fold external cross-validation procedure. Robust statistical tests (bootstrap and Kolmogorov-Smirnov statistics) were employed to evaluate the significance of calculated models. The Wilcoxon signed-rank test was used to compare the performance of methods. Individual structure-complexation property models obtained with nonlinear methods demonstrated a significantly better performance than the models built using multilinear regression analysis (MLRA). However, the averaging of several MLRA models based on SMF descriptors provided as good of a prediction as the most efficient nonlinear techniques. Support Vector Machines and Associative Neural Networks contributed in the largest number of significant models. Models based on fragments (SMF descriptors and E-state counts) had higher prediction ability than those based on E-state indices. The use of SMF descriptors and E-state counts provided similar results, whereas E-state indices lead to less significant models. The current study illustrates the difficulties of quantitative comparison of different methods: conclusions based only on one data set without appropriate statistical tests could be wrong.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
2.923
0.000
40
60
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2006
HGF-Berichtsjahr 0
ISSN (print) / ISBN 0021-9576
e-ISSN 1520-5142
Quellenangaben Band: 46, Heft: 2, Seiten: 808-819 Artikelnummer: , Supplement: ,
Verlag American Chemical Society (ACS)
Begutachtungsstatus Peer reviewed
POF Topic(s) 30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503700-001
PubMed ID 16563012
Erfassungsdatum 2006-12-12