Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Using nano-attapulgite clay compounded hydrophilic urethane foams (AT/HUFs) as biofilm support enhances oil-refinery wastewater treatment in a biofilm membrane bioreactor.
Sci. Total Environ. 646, 606-617 (2019)
Petroleum refinery wastewater (PRW) treatments based on biofilm membrane bioreactor (BF-MBR) technology is an ideal approach and biofilm supporting material is a critical factor. In this study, BF-MBR with nano-attapulgite clay compounded hydrophilic urethane foams (AT/HUFs) as a biofilm support was used to treat PRW with a hydraulic retention time of 5 h. The removal rate of 500 mg/L chemical oxygen demand (COD), 15 mg/L NH4+and 180 NTU of turbidity were 99.73%, 97.48% and 99.99%, which were 23%, 20%, and 6% higher than in the control bioreactor, respectively. These results were comparatively higher than that observed for the sequencing batch reactor (SBR). The death rate of the Spirodela polyrrhiza (L.) irrigated with BF-MBR-treated water was 4.44%, which was similar to that of the plants irrigated with tap water (3.33%) and SBR-treated water (5.56%), but significantly lower than that irrigated with raw water (84.44%). The counts demonstrated by qPCR for total bacteria, denitrifiers, nitrite oxidizing bacteria, ammonia oxidizing bacteria, and ammonia-oxidizing archaea were also higher in BF-MBR than those obtained by SBR. Moreover, the results of 16 s rRNA sequencing have demonstrated that the wastewater remediation microbes were enriched in AT/HUFs, e.g., Acidovorax can degrade polycyclic aromatic hydrocarbons, and Sulfuritalea is an efficient nitrite degrader. In summary, BF-MBR using AT/HUF as a biofilm support improves microbiome of the actived sludge and is reliable for oil-refinery wastewater treatment.
Impact Factor
Scopus SNIP
Scopus
Cited By
Cited By
Altmetric
5.589
1.809
23
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Biofilm Membrane Bioreactor (bf-mbr) ; Microbiome ; Nano-attapulgite Clay Compounded Hydrophilic Urethane Foam (at/huf) ; Petroleum Refinery Wastewater (prw) ; Wastewater Treatment
Sprache
englisch
Veröffentlichungsjahr
2019
Prepublished im Jahr
2018
HGF-Berichtsjahr
2018
ISSN (print) / ISBN
0048-9697
e-ISSN
1879-1026
Zeitschrift
Science of the Total Environment, The
Quellenangaben
Band: 646,
Seiten: 606-617
Verlag
Elsevier
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Virology (VIRO)
POF Topic(s)
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Immune Response and Infection
PSP-Element(e)
G-554300-001
Scopus ID
85050535111
PubMed ID
30059921
Erfassungsdatum
2018-08-01