PuSH - Publikationsserver des Helmholtz Zentrums München

Tetko, I.V. ; Poda, G.I.* ; Ostermann, C.* ; Mannhold, R.*

Accurate in silico log P predictions: One can't embrace the unembraceable.

Mol. Inform. 28, 845-849 (2009)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Prediction accuracy of in silico methods for physicochemical and ADMET properties of drugs is an actual matter of controversial discussions. With a particular concern on log P prediction methods, we discuss here, how understanding the limitations of methods, their applicability domains and their prediction accuracies, as well as the use of local models can help to establish accurate and meaningful in silico predictions.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Lipophilicity; Structure-property relationships; Computational chemistry; associative neural networks; applicability domain; lipophilicity; alogps-2.1; chemistry; qsar
ISSN (print) / ISBN 1868-1743
e-ISSN 1868-1751
Zeitschrift Molecular Informatics
Quellenangaben Band: 28, Heft: 8, Seiten: 845-849 Artikelnummer: , Supplement: ,
Verlag Wiley
Verlagsort Weinheim
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed