Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Role of GPX4 in ferroptosis and its pharmacological implication.
Free Radical Biol. Med. 133, 144-152 (2019)
Ferroptosis is a non-apoptotic form of cell death characterized by iron-dependent lipid peroxidation and metabolic constraints. Dependence on NADPH/H+, polyunsaturated fatty acid metabolism, and the mevalonate and glutaminolysis metabolic pathways have been implicated in this novel form of regulated necrotic cell death. Genetic studies performed in cells and mice established the selenoenzyme glutathione peroxidase (GPX4) as the key regulator of this form of cell death. Besides these genetic models, the identification of a series of small molecule ferroptosis-specific inhibitors and inducers have not only helped in the delineation of the molecular underpinnings of ferroptosis but they might also prove highly beneficial when tipping the balance between cell death inhibition and induction in the context of degenerative diseases and cancer, respectively. In the latter, the recent recognition that a subset of cancer cell lines including certain triple negative breast cancer cells and those of therapy-resistant high-mesenchymal cell state present a high dependence on this lipid make-up offers unprecedented opportunities to eradicate difficult to treat cancers. Due to the rapidly growing interest in this form of cell death, we provide an overview herein what we know about this field today and its future translational impact.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
5.657
1.459
161
366
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Schlagwörter
Regulated Necrosis ; Gpx4 ; Lipid Peroxidation ; Cysteine Metabolism ; Non-apoptotic Cell Death ; Ferritinophagy; Glutathione-peroxidase 4; Dependent Cell-death; Lipid-peroxidation; System X(c)(-); Cystine/glutamate Antiporter; Cystine Transporter; Parkinsons-disease; Therapeutic Target; Oxidative Stress; Cancer-cells
Sprache
englisch
Veröffentlichungsjahr
2019
Prepublished im Jahr
2018
HGF-Berichtsjahr
2018
ISSN (print) / ISBN
0891-5849
e-ISSN
1873-4596
Zeitschrift
Free Radical Biology and Medicine
Quellenangaben
Band: 133,
Seiten: 144-152
Verlag
Elsevier
Verlagsort
New York, NY
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Developmental Genetics (IDG)
POF Topic(s)
30204 - Cell Programming and Repair
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-500500-001
WOS ID
WOS:000457712300016
Scopus ID
85053774882
PubMed ID
30219704
Erfassungsdatum
2018-09-27