Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
A novel metabolic signature to predict the requirement of dialysis or renal transplantation in patients with chronic kidney disease.
J. Proteome Res. 18, 1796–1805 (2019)
Identification of chronic kidney disease patients at risk of progressing to end-stage renal disease (ESRD) is essential for treatment decision-making and clinical trial design. Here, we explored whether proton nuclear magnetic resonance (NMR) spectroscopy of blood plasma improves the currently best performing kidney failure risk equation, the so-called Tangri score. Our study cohort comprised 4640 participants from the German Chronic Kidney Disease (GCKD) study, of whom 185 (3.99%) progressed over a mean observation time of 3.70 +/- 0.88 years to ESRD requiring either dialysis or transplantation. The original four-variable Tangri risk equation yielded a C statistic of 0.863 (95% CI, 0.831-0.900). Upon inclusion of NMR features by state-of-the-art machine learning methods, the C statistic improved to 0.875 (95% CI, 0.850-0.911), thereby outperforming the Tangri score in 94 out of 100 subsampling rounds. Of the 24 NMR features included in the model, creatinine, high-density lipoprotein, valine, acetyl groups of glycoproteins, and Ca2+-EDTA carried the highest weights. In conclusion, proton NMR-based plasma fingerprinting improved markedly the detection of patients at risk of developing ESRD, thus enabling enhanced patient treatment.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
3.780
0.940
7
7
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Kidney Failure Risk Equation ; Metabolomics ; Chronic Kidney Disease; Risk-factors; Progression; Failure; Model; Ckd; Identification; Insufficiency; Spectroscopy; Association; Biomarkers
Sprache
Veröffentlichungsjahr
2019
HGF-Berichtsjahr
2019
ISSN (print) / ISBN
1535-3893
e-ISSN
1535-3907
Zeitschrift
Journal of Proteome Research
Quellenangaben
Band: 18,
Heft: 4,
Seiten: 1796–1805
Verlag
American Chemical Society (ACS)
Verlagsort
1155 16th St, Nw, Washington, Dc 20036 Usa
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Computational Biology (ICB)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-554100-001
WOS ID
WOS:000464068900029
Scopus ID
85063123183
PubMed ID
30817158
Erfassungsdatum
2019-04-05