PuSH - Publikationsserver des Helmholtz Zentrums München

Zacharias, H.U. ; Altenbuchinger, M.* ; Schultheiss, U.T.* ; Samol, C.* ; Kotsis, F.* ; Poguntke, I.* ; Sekula, P.* ; Krumsiek, J. ; Köttgen, A.* ; Spang, R.* ; Oefner, P.J.* ; Gronwald, W.*

A novel metabolic signature to predict the requirement of dialysis or renal transplantation in patients with chronic kidney disease.

J. Proteome Res. 18, 1796–1805 (2019)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Identification of chronic kidney disease patients at risk of progressing to end-stage renal disease (ESRD) is essential for treatment decision-making and clinical trial design. Here, we explored whether proton nuclear magnetic resonance (NMR) spectroscopy of blood plasma improves the currently best performing kidney failure risk equation, the so-called Tangri score. Our study cohort comprised 4640 participants from the German Chronic Kidney Disease (GCKD) study, of whom 185 (3.99%) progressed over a mean observation time of 3.70 +/- 0.88 years to ESRD requiring either dialysis or transplantation. The original four-variable Tangri risk equation yielded a C statistic of 0.863 (95% CI, 0.831-0.900). Upon inclusion of NMR features by state-of-the-art machine learning methods, the C statistic improved to 0.875 (95% CI, 0.850-0.911), thereby outperforming the Tangri score in 94 out of 100 subsampling rounds. Of the 24 NMR features included in the model, creatinine, high-density lipoprotein, valine, acetyl groups of glycoproteins, and Ca2+-EDTA carried the highest weights. In conclusion, proton NMR-based plasma fingerprinting improved markedly the detection of patients at risk of developing ESRD, thus enabling enhanced patient treatment.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.780
0.940
7
7
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Kidney Failure Risk Equation ; Metabolomics ; Chronic Kidney Disease; Risk-factors; Progression; Failure; Model; Ckd; Identification; Insufficiency; Spectroscopy; Association; Biomarkers
Sprache
Veröffentlichungsjahr 2019
HGF-Berichtsjahr 2019
ISSN (print) / ISBN 1535-3893
e-ISSN 1535-3907
Quellenangaben Band: 18, Heft: 4, Seiten: 1796–1805 Artikelnummer: , Supplement: ,
Verlag American Chemical Society (ACS)
Verlagsort 1155 16th St, Nw, Washington, Dc 20036 Usa
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-554100-001
Scopus ID 85063123183
PubMed ID 30817158
Erfassungsdatum 2019-04-05