Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Shorter interval and multiple flooding-drying cycling enhanced the mineralization of C-14-DDT in a paddy soil.
Sci. Total Environ. 676, 420-428 (2019)
DDT and its main metabolites (DDTs) are still the residual contaminants in soil. Sequential anaerobic-aerobic cycling has long been approved for enhancing the degradation of DDTs in soil. However, there is a lack of study investigating whether anaerobic-aerobic cycling would enhance the mineralization of DDT, and what a kind of anaerobic-aerobic management regimes would be optimal. To fill these gaps, the fate of 14C-DDT under different flooding-drying cycles was examined in a paddy soil by monitoring its mineralization and bioavailability. The results show the total mineralization of 14C-DDT in 314 days accounted for 1.01%, 1.30%, and 1.41%, individually for the treatments subjected to one, two, and three flooding-drying cycles. By comparison, the treatment subjected to the permanently aerobic phase had only 0.12% cumulative mineralization. Shorter intervals and multiple flooding-drying cycles enhanced the mineralization of 14C-DDT, however, reduced its bioavailability. Therefore, the enhanced mineralization was explained from an abiotic pathway as predicted by the one-electron reduction potential (E1), the Fukui function for nucleophilic attack (f+) and the steps for anaerobic decarboxylation. From a practical view, it is important to investigate how the anaerobic-aerobic interval and frequency would affect the degradation and mineralization of DDT, which is very essential in developing remediation strategies.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
14 C-ddt ; Anaerobic-aerobic Cycling ; Dft Calculation ; Mineralization
ISSN (print) / ISBN
0048-9697
e-ISSN
1879-1026
Zeitschrift
Science of the Total Environment, The
Quellenangaben
Band: 676,
Seiten: 420-428
Verlag
Elsevier
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Network Biology (INET)
Research Unit Microbe-Plant Interactions (AMP)
Research Unit Microbe-Plant Interactions (AMP)