Redox-dependent chromatin remodeling: A new function of nitric oxide as architect of chromatin structure in plants.
    
    
        
    
    
        
        Front. Plant Sci. 10:625 (2019)
    
    
    
		
		
			
				Nitric oxide (NO) is a key signaling molecule in all kingdoms. In plants, NO is involved in the regulation of various processes of growth and development as well as biotic and abiotic stress response. It mainly acts by modifying protein cysteine or tyrosine residues or by interacting with protein bound transition metals. Thereby, the modification of cysteine residues known as protein S-nitrosation is the predominant mechanism for transduction of NO bioactivity. Histone acetylation on N-terminal lysine residues is a very important epigenetic regulatory mechanism. The transfer of acetyl groups from acetyl-coenzyme A on histone lysine residues is catalyzed by histone acetyltransferases. This modification neutralizes the positive charge of the lysine residue and results in a loose structure of the chromatin accessible for the transcriptional machinery. Histone deacetylases, in contrast, remove the acetyl group of histone tails resulting in condensed chromatin with reduced gene expression activity. In plants, the histone acetylation level is regulated by S-nitrosation. NO inhibits HDA complexes resulting in enhanced histone acetylation and promoting a supportive chromatin state for expression of genes. Moreover, methylation of histone tails and DNA are important epigenetic modifications, too. Interestingly, methyltransferases and demethylases are described as targets for redox molecules in several biological systems suggesting that these types of chromatin modifications are also regulated by NO. In this review article, we will focus on redox-regulation of histone acetylation/methylation and DNA methylation in plants, discuss the consequences on the structural level and give an overview where NO can act to modulate chromatin structure.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Review
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        S-nitrosation ; Acetylation ; Chromatin Modulation ; Methylation ; Nitric Oxide ; Redox-modification; L-homocysteine Hydrolase; S-nitrosylated Proteins; Cytosolic Glyceraldehyde-3-phosphate Dehydrogenase; Dna Methylation; Gene-expression; Cell-death; Nuclear Translocation; Histone Deacetylases; Arabidopsis-thaliana; Transcription Factor
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        
    
 
    
        Veröffentlichungsjahr
        2019
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2019
    
 
    
    
        ISSN (print) / ISBN
        1664-462X
    
 
    
        e-ISSN
        1664-462X
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 10,  
	    Heft: ,  
	    Seiten: ,  
	    Artikelnummer: 625 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Frontiers
        
 
        
            Verlagsort
            Avenue Du Tribunal Federal 34, Lausanne, Ch-1015, Switzerland
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30202 - Environmental Health
    
 
    
        Forschungsfeld(er)
        Environmental Sciences
    
 
    
        PSP-Element(e)
        G-504900-008
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2019-06-14