PuSH - Publikationsserver des Helmholtz Zentrums München

Kurz, C.F. ; Hatfield, L.A.*

Identifying and interpreting subgroups in health care utilization data with count mixture regression models.

Stat. Med. 38, 4423-4435 (2019)
Postprint Forschungsdaten DOI PMC
Open Access Green
Inpatient care is a large share of total health care spending, making analysis of inpatient utilization patterns an important part of understanding what drives health care spending growth. Common features of inpatient utilization measures such as length of stay and spending include zero inflation, overdispersion, and skewness, all of which complicate statistical modeling. Moreover, latent subgroups of patients may have distinct patterns of utilization and relationships between that utilization and observed covariates. In this work, we apply and compare likelihood-based and parametric Bayesian mixtures of negative binomial and zero-inflated negative binomial regression models. In a simulation, we find that the Bayesian approach finds the true number of mixture components more accurately than using information criteria to select among likelihood-based finite mixture models. When we apply the models to data on hospital lengths of stay for patients with lung cancer, we find distinct subgroups of patients with different means and variances of hospital days, health and treatment covariates, and relationships between covariates and length of stay.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
1.375
1.375
2
4
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Bayesian Inference ; Cost Data ; Count Data ; Health Economics ; Mixture Model; Bayesian Model; Maximum-likelihood; Finite Mixture; Parameters; Diagnosis; Patterns; Version
Sprache englisch
Veröffentlichungsjahr 2019
HGF-Berichtsjahr 2019
ISSN (print) / ISBN 0277-6715
e-ISSN 1097-0258
Quellenangaben Band: 38, Heft: 22, Seiten: 4423-4435 Artikelnummer: , Supplement: ,
Verlag Wiley
Verlagsort 111 River St, Hoboken 07030-5774, Nj Usa
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-505300-002
Scopus ID 85069920091
PubMed ID 31304619
Erfassungsdatum 2019-08-01