möglich sobald bei der ZB eingereicht worden ist.
Identification of functionally relevant genetic variants associated with multiple sclerosis using deep learning.
Mult. Scler. J. 25, 906-907 (2019)
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Meeting abstract
Sprache
englisch
Veröffentlichungsjahr
2019
HGF-Berichtsjahr
2019
Zeitschrift
Multiple Sclerosis Journal
Quellenangaben
Band: 25,
Seiten: 906-907
Verlag
Sage
Verlagsort
London
Institut(e)
Institute of Computational Biology (ICB)
Institute of Epidemiology (EPI)
Institute of Human Genetics (IHG)
Institute of Genetic Epidemiology (IGE)
Institute of Epidemiology (EPI)
Institute of Human Genetics (IHG)
Institute of Genetic Epidemiology (IGE)
POF Topic(s)
30205 - Bioengineering and Digital Health
30202 - Environmental Health
30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
30202 - Environmental Health
30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
Forschungsfeld(er)
Enabling and Novel Technologies
Genetics and Epidemiology
Genetics and Epidemiology
PSP-Element(e)
G-503800-001
G-504091-004
G-500700-001
G-504000-010
G-504100-001
G-504091-004
G-500700-001
G-504000-010
G-504100-001
WOS ID
WOS:000485303104020
Erfassungsdatum
2019-10-22